This function calculates the false discovery rate (proportion of linked pairs that are false positives) in a sample given the sensitivity \(\eta\)
and specificity \(\chi\) of the linkage criteria, and sample size \(M\). Assumptions about transmission and linkage (single or multiple)
can be specified.
falsediscoveryrate(eta, chi, rho, M, R = NULL, assumption = "mtml")
scalar or vector giving the sensitivity of the linkage criteria
scalar or vector giving the specificity of the linkage criteria
scalar or vector giving the proportion of the final outbreak size that is sampled
scalar or vector giving the number of cases sampled
scalar or vector giving the effective reproductive number of the pathogen (default=NULL)
a character vector indicating which assumptions about transmission and linkage criteria. Default = 'mtml'
. Accepted arguments are:
'stsl'
for the single-transmission single-linkage assumption (prob_trans_stsl()
).
'mtsl'
for the multiple-transmission single-linkage assumption (prob_trans_mtsl()
).
'mtml'
for the multiple-transmission multiple-linkage assumption (prob_trans_mtml()
).
scalar or vector giving the true discovery rate
Other discovery_rate:
truediscoveryrate()
# The simplest case: single-transmission, single-linkage, and perfect sensitivity
falsediscoveryrate(eta=1, chi=0.9, rho=0.5, M=100, assumption='stsl')
#> Warning: `falsediscoveryrate()` was deprecated in phylosamp 1.0.0.
#> ℹ Please use `translink_fdr()` instead.
#> Warning: The `eta` argument of `falsediscoveryrate()` is deprecated as of phylosamp
#> 1.0.0.
#> ℹ Please use the `sensitivity` argument of `translink_fdr()` instead.
#> Warning: The `chi` argument of `falsediscoveryrate()` is deprecated as of phylosamp
#> 1.0.0.
#> ℹ Please use the `specificity` argument of `translink_fdr()` instead.
#> [1] 0.4999926
# Multiple-transmission and imperfect sensitivity
falsediscoveryrate(eta=0.99, chi=0.9, rho=1, M=50, R=1, assumption='mtsl')
#> [1] 0.1373857
# Small outbreak, larger sampling proportion
falsediscoveryrate(eta=0.99, chi=0.95, rho=1, M=50, R=1, assumption='mtml')
#> [1] 0.5427252
# Large outbreak, small sampling proportion
falsediscoveryrate(eta=0.99, chi=0.95, rho=0.5, M=1000, R=1, assumption='mtml')
#> [1] 0.9805463