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A B S T R A C T   

The COVID-19 pandemic led to an unprecedented demand for projections of disease burden and healthcare 
utilization under scenarios ranging from unmitigated spread to strict social distancing policies. In response, 
members of the Johns Hopkins Infectious Disease Dynamics Group developed flepiMoP (formerly called the 
COVID Scenario Modeling Pipeline), a comprehensive open-source software pipeline designed for creating and 
simulating compartmental models of infectious disease transmission and inferring parameters through these 
models. The framework has been used extensively to produce short-term forecasts and longer-term scenario 
projections of COVID-19 at the state and county level in the US, for COVID-19 in other countries at various 
geographic scales, and more recently for seasonal influenza. In this paper, we highlight how the flepiMoP has 
evolved throughout the COVID-19 pandemic to address changing epidemiological dynamics, new interventions, 
and shifts in policy-relevant model outputs. As the framework has reached a mature state, we provide a detailed 
overview of flepiMoP’s key features and remaining limitations, thereby distributing flepiMoP and its documen-
tation as a flexible and powerful tool for researchers and public health professionals to rapidly build and deploy 
large-scale complex infectious disease models for any pathogen and demographic setup.   

1. Introduction 

From the emergence of SARS-CoV-2 in 2019 through the declaration 
of the global pandemic in March 2020 and the current landscape to-
wards endemicity, it has been critical for decision-makers to be 
empowered with epidemiological models for better-informed decision- 
making. A large effort was enlisted to forecast and project the spread of 
the virus, and to investigate the effect of public health interventions on 
health outcomes. It is within this context that the “FLexible EPIdemic 
MOdeling Pipeline” (flepiMoP; formerly known as the COVID Scenario 
Modeling Pipeline or CSP) was built. While many software pipelines 
were created or adapted for use during the pandemic, most were 
designed specifically around a single model structure (Bouchnita et al., 
2024) or a specific spatial setup (Pillai et al., 2024; Rosenstrom et al., 

2024). However, other flexible frameworks were developed, charac-
terized by their scale of representation: from agent-based modeling 
frameworks, such as GLEaMviz/LEAM-US, FRED, EpiHiper, EpoSimS, 
CovaSim, EMOD (Bershteyn et al., 2018; Broeck et al., 2011; Chen et al., 
2024; Chinazzi et al., 2024; Kerr et al., 2021; Mniszewski et al., 2008; 
Moore et al., 2024), to compartmental metapopulation models such as 
flepiMoP, UVA-adaptive (Porebski et al., 2024) and SIkJalpha (Srivas-
tava, 2023; Srivastava et al., 2020), also including more general statis-
tical modeling packages such as pomp (Asfaw et al., 2023; King et al., 
2015). 

In this diverse landscape, FlepiMoP stands out as a versatile and 
actively developed open-source software suite for simulating a wide 
range of compartmental models of infectious disease transmission. The 
disease transmission and observation models are defined by a no-code 
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configuration file, allowing a breadth of models to be specified consis-
tently, from simple SIR-style models in a single population to more 
complex models of multiple pathogen strains transmitting between 
thousands of connected metapopulations and age groups. In the context 
of the COVID-19 Scenario Modeling Hub (SMH, COVID-19 Scenario 
Modeling Hub, 2020, Loo et al., 2024) and the COVID-19 Forecast Hub 
(FCH, COVID-19 Forecast Hub, 2020, Cramer et al., 2022a), flepiMoP is 
used to model transmission of SARS-CoV-2 in the US at the state level 
using a compartmental metapopulation structure. The fifty US states are 
connected through human mobility and most epidemiological processes 
(e.g., vaccinations, the emergence of variants, waning immunity) are 
simulated mechanistically. 

The main features of flepiMoP are:  

• Open-source (GPL v3.0) infectious dynamics modeling software, 
written in R and Python;  

• Versatile, no-code design that can be applied to compartmental and 
outcome observation models, allowing for quick application to 
epidemic events (e.g., emergence of new variants, vaccines, non- 
pharmaceutical interventions (NPIs));  

• Powerful, just-in-time compiled disease transmission model and 
distributed inference engine ready for large-scale simulations on 
high-performance computing clusters or cloud workflows;  

• Adapted to small- and large-scale problems, from a simple SIR model 
to a complex model structure with hundreds of compartments on 
thousands of connected populations;  

• Strong emphasis on mechanistic processes, with a design aimed at 
leveraging domain knowledge in conjunction with statistical 
inference;  

• Portable for Windows WSL, MacOS, and Linux with the provided 
Docker image and an Anaconda environment. 

The objective of this paper is to describe the evolution of flepiMoP 
through the COVID-19 pandemic and provide an overview of the pipe-
line. The first section details the changes introduced in response to both 
the changing pandemic and the corresponding shifting demands from 
decision-makers. The second section provides a detailed overview of the 
flepiMoP framework, its primary features, current capabilities, and 
limitations. This overview is built around an example use-case, detailing 
a model of the first two years of COVID-19 transmission in the US. We 
provide a glimpse of model outputs in the last section. 

2. The evolution of flepiMoP throughout the COVID-19 pandemic 

Formerly called The Johns Hopkins COVID-19 Scenario Modeling 
Pipeline (CSP), the development of flepiMoP started on February 28, 
2020, to provide the California Department of Public Health (CDPH) 
with scenario projections for the spread of SARS-CoV-2 in the state at the 
county level and the expected impact on the healthcare system. In its 
initial form, flepiMoP consisted of four independent modules: i) an 
epidemic seeding and importation module, ii) a compartmental module 
for disease transmission simulation, iii) an observation model for the 
computation of health outcomes, and iv) a report generation module 
aimed at decision-makers (Lemaitre et al., 2021). This structure was 
sufficient at the initial stages of the pandemic and flepiMoP models 
successfully captured early epidemiological dynamics and uncertainties, 
allowing the production of reports tailored to inform various govern-
mental entities (e.g., CDPH, US Centers for Disease Control and Pre-
vention (CDC), FEMA). 

flepiMoP has since been continuously evolving to address changes in 
the pandemic’s complexity and to improve our ability to inform the 
public health response to infectious disease epidemics (Fig. 1). As 
months of epidemiological data became available, the first major change 
was the development of a fifth module for the inference of model pa-
rameters from data. This inference module consists of a Markov Chain 
Monte Carlo (MCMC) algorithm tailored to large-scale infectious disease 
modeling problems across connected subpopulations. It leverages 
massively parallel computing with many short chains to handle time- 
consuming epidemic simulations and high-dimensional parameter 
spaces. This allows flepiMoP to estimate location-specific parameters and 
calibrate models to past data and then produce short-term forecasts. The 
submission of such forecasts to the COVID-19 Forecast Hub began on 
April 28, 2020 (performance evaluated in Cramer et al., 2022b). 

In December 2020, the response to the pandemic switched focus 
from NPIs to vaccination. This change prompted a rewrite of the disease 
transmission model to allow for parallel paths of infection based on the 
vaccination status of the population. Since vaccine allocation was highly 
age-dependent, the model was also expanded to explicitly track separate 
age groups (as opposed to using age-distribution-adjusted rates). The 
emergence of new SARS-CoV-2 variants with altered transmissibility 
and severity (e.g., Alpha in February 2021 and Delta in June 2021 
(Davies et al., 2021; Taylor, 2021)), evidence for waning immunity, and 
evidence for the substantial immune escape of the Omicron variant 

Fig. 1. The evolution of flepiMoP over the course of the COVID-19 pandemic. Timeline of COVID-19 cases reported in the US (in millions), with mission changes 
(purple) and epidemiological changes (yellow) highlighted. These changes directed the development of flepiMoP technical features (blue) while continuous modeling 
runs (gray bars) informed public health departments and the different multi-modeling hubs. 
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(Pulliam et al., 2022) further led to an extensive rewrite of the trans-
mission module. The formerly hardcoded SEIR model is now a meta-
population transmission module that can be adapted to most 
compartmental structures, including complex models of immunity and 
clinical progression, as well as stratification by age, multiple pathogen 
strains, or vaccination statuses. The transition rates between compart-
ments can also vary across space and time. We also extended the 
observation model to allow for arbitrary decision trees and probabilities, 
delays, and duration changes in space and time. This extension allows 
flepiMoP to compute different health outcomes by age group, variant, or 
other strata and to represent features of the local health systems. 

These changes allowed flepiMoP to adapt to the increasingly complex 
dynamics of the COVID-19 pandemic. However, changes also introduced 
increased computational complexity such that inference runs could take 
several days and generate hundreds of gigabytes of output data. To 
mitigate this, we refined a workflow that enables high-frequency, large- 
scale runs and rapid updates to the mechanistic model in a reproducible 
and computationally tractable way. To further manage the rapid 
changes and other new applications, we have developed a range of 
helper features, including a config-writer R package to quickly translate 
complex model requirements into the configuration file notation and 
post-processing tools to summarize the results and analyze model fits. 

After three years of development and over 1500 model runs at 
varying scales, the flepiMoP software framework has reached a mature 
state with a stable feature set. The framework is capable of generating 
forecasts and scenario projections for most compartmental models of 
disease transmission at any geographical scale, with simultaneous cali-
bration to multiple empirical data types. Notably, flepiMoP has been 
used to produce scenario projections of COVID-19 for the US COVID-19 
Scenario Modeling Hub and various other locations, including 
Switzerland at the canton level, California at the county level, and South 

Korea at the national level. The framework has also been successfully 
adapted for influenza forecasting and scenario projections for the CDC’s 
FluSight (CDC, 2023) and the US Flu Scenario Modeling Hub with only 
minor modifications to the configuration files (Reich et al., 2019). These 
successes demonstrate flepiMoP’s versatility and effectiveness as a tool 
for modeling infectious diseases. flepiMoP is now available as an acces-
sible tool for users who want to generate forecasts or scenario pro-
jections from a compartmental model at any scale, with in-depth 
documentation, vignettes, and template model setups available to all 
levels of users (flepimop.org). 

3. flepiMoP: a flexible epidemic modeling pipeline 

flepiMoP is divided into multiple composable submodules, as shown 
in Fig. 2. A single YAML configuration file defines the inclusion and 
behavior of each submodule over the specified population structure. The 
core module, gempyor (“General Epidemics Modeling Pipeline with Ynter-
ventions and Outcome Reporting”), is a fast and flexible disease trans-
mission model that can simulate any compartmental structure and 
observation model. gempyor can be run standalone for projection sce-
narios (given a set of parameters and without inference) or within a 
tailored, distributed inference module that executes several parallel 
chains of repeated epidemic simulations in an MCMC-like fashion, 
allowing for calibration of the model to data and identification of model 
parameters. As inference and simulation of large-scale problems are 
computationally costly, flepiMoP is provided with batch submission 
scripts for Slurm computing clusters or Amazon Web Service Batch. 
Around these modules, flepiMoP provides a toolbox of helper scripts to 
process data, store and retrieve model outputs, write configs, diagnose 
errors, and visualize results. 

Fig. 2. Overview of the flepiMoP modules and their interactions during an inference run. Here we use standard flowchart symbols to represent the components of the 
pipeline and processes. 
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3.1. Population structure 

flepiMoP operates over a defined demographic setup, with a single 
population or several connected subpopulations. The model inputs and 
outputs are specified for each population/subpopulation, and sub-
populations can be connected by a mixing matrix. 

For the US Scenario Modeling Hubs, we model the transmission of 
SARS-CoV-2 and influenza and their outcomes at the state level with 
fifty-one subpopulations, one for each US state plus the District of 
Columbia, connected through human mobility as measured by daily 
recurring commutes reported by the US Census Bureau (2015). Note that 
we have chosen to represent geographical locations as subpopulations 
and age classes as meta-compartments (see below). This is a convenient 
choice for generating state-level outputs aggregated across ages. How-
ever, one could represent both age structure and administrative units as 
subpopulations with no impact on the results. 

4. Modeling infectious disease dynamics with gempyor 

gempyor is an open-source Python package that constructs and sim-
ulates compartmental infectious disease dynamics models. gempyor is 
built to be used within flepiMoP, where it integrates with parameter 
inference and data processing scripts, but can also be run standalone 
with a command-line interface, generating simulations of disease inci-
dence under different scenario assumptions. 

4.1. Compartmental structure 

The compartmental structure is defined as the product of so-called 
meta-compartments. For the example described below, the model 
featured 336 compartments in each of the 50 US states plus the District 
of Columbia, built from all possible combinations of the meta- 
compartments described in Table 1. 

Note that we model the infectious stage in three equivalent, chained 
compartments (with equal transition rates between compartments), 
which results in a Gamma-distributed residence time in the infectious 
compartment (Champredon et al., 2018; Cox, 2017; Hurtado and Kir-
osingh, 2019), a necessary modification to give realistically distributed 
serial intervals (Galmiche et al., 2023; Lloyd, 2001; Wearing et al., 
2005). Moreover, we consider the waning of both vaccine-induced im-
munity and infection-induced immunity: an individual might have both 
waned levels of vaccine- and infection-induced immunity, full protec-
tion from both, or have only one source of immunity protection that has 
waned. This structure puts a strong emphasis on mechanistic dynamics 
and most transition rate parameters can be informed by the scientific 
literature. 

4.2. Transition rates between compartments 

A transition between a source compartment X and a destination 
compartment Y in a subpopulation i is characterized by its rate, denoted 
rXi(t)→Yi(t)(t) that is derived from user-provided (potentially time- 
varying, location-specific) parameters. 

For most transitions, the rate depends only on the source compart-
ment’s X population. This is typical for transitions that approximate 
changes in a state based solely on time (such as waning, recovery, or the 
transition from E→I) and for transitions caused by external forcing (such 
as vaccination). In a subpopulation i, the rate of these transitions is 
written as 

rXi(t)→Yi(t)(t) = bi(t) • Xi(t)ai(t)

where Xi, Yi are time-dependent variables describing the number of 
individuals in each compartment in subpopulation i, ai(t) is a unitless 
scaling parameter and bi(t) is the rate parameter (units: day− 1) in sub-
population i. In most cases, we have ai(t) = 1∀{i, t}. 

For the force of infection, the transition rate is proportional to other 
compartments’ values. For example, the transition from S to E (new 
infections) is written as a mass-action law that depends on the number of 
infectious individuals I. For generality, and as infectious individuals may 
be spread among several meta-compartments, flepiMoP allows each 
transition to be proportional to an arbitrary number of groups (l) of 
compartments (m) that are summed together. This allows the transition 
from compartment S to compartment E to depend on the infected in-
dividuals in each age group and vaccination status. The rate governing 
these transitions is written as: 

rXi(t)→Yi(t)(t) = Xi(t)ai(t)⋅
∏

l
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where Ni is the population of subpopulation i and the compartments 
Zl,m,i are time-dependent variables describing the number of individuals 
in each compartment that influence the transition from Xi to Yi; these 
variables Zl,m,i may be Xi, Yi or any other variable. Each element Mi,j of 
the mixing matrix represents the number of individuals mixed daily 
from subpopulation i to j. These mixed individuals from subpopulation i 
spend a fraction pa of the day in subpopulation j (pa = 0.5 by default) 
and subsequently get exposed to infectious individuals in j. 

These transition formulas provided enough flexibility to define 
models to track the COVID-19 pandemic in the US and the dynamics of 
influenza during the 2022–23 season. However, in its current state, 
gempyor does not allow rates that involve other nonlinear functions of 
compartments or parameters. As described in flepiMoP documentation, 
gempyor uses a compact syntax centered around transition groups for 
ease of defining the transition rates. One does not have to write the same 
transition for every age group or vaccination state, but can write an 
overall transition and how it is altered by age or vaccination. Coupled 
with the meta-compartment definition, these syntaxes enable fast iter-
ation of the mechanistic structure, where it is straightforward to add a 
novel variant, an additional vaccine dose, or a different waning structure 
to the configuration file. 

4.2.1. Simulation of the disease transmission dynamics 
The epidemic simulation starts from the specified initial conditions, 

and additional introductions (or importations) may be seeded in any 
compartments over the course of the simulation. These initial conditions 

Table 1 
The compartmental structure of a flepiMoP model is constructed from meta- 
compartments and compartments. These model compartments were used to 
model the first two years of COVID-19 transmission in the US, from January 1st, 
2020 to March 26, 2022.  

Meta- 
compartments 

Compartments  

(7) Infection 
stages 

Susceptible, Exposed, Infectious (divided into 3 
subcompartments to approximate Gamma-distributed 
residence time), Recovered (with natural immunity), Waned 
(from natural immunity)  

(4) Vaccination 
stages 

Unvaccinated, vaccinated with 1 dose, with 2 doses, 
vaccinated with 1 or 2 doses but with waned vaccine-induced 
immunity  

(4) Variant types Wild type, Alpha, Delta, Omicron  
(3) Age classes Age 0–17, age 18–64, age 65–100 years  
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and introductions are provided by the user or built by flepiMoP’s helper 
scripts. 

The model can be simulated as a continuous-time, deterministic 
process, through a set of ordinary differential equations. For each 
transition between compartments X and Y, we have: 

dXi(t)
dt

= − rXi(t)→Yi(t),

dYi(t)
dt

= rXi(t)→Yi(t)

gempyor proposes several methods to integrate these differential equa-
tions, including standard Python solvers. However, we have experienced 
that while accurate, these algorithms are too slow for large-scale 
epidemic simulations. To remedy this, we developed a modified, just- 
in-time compiled version of the Runge-Kutta 4 explicit integration 
scheme that delivers quick and accurate epidemic simulation at the 
timescale of most infectious disease dynamics problems. gempyor also 
provides lower-order explicit integration schemes, but we have experi-
enced error buildup, leading to distorted predictions and misleading 
parameter estimation, even with small time steps. 

Alternatively, the model can be treated as a continuous-time Markov 
Chain process, which we approximate as a discrete-time stochastic 
process using Euler-update-like binomial draws with exponential tran-
sition probabilities for computational practicability. The number of in-
dividuals transitioning between states X and Y between time t and t+Δt 
is written as: 

NXi(t)→Yi(t)(t) = Binom(X(t), 1 − e− Δt⋅
rXi (t)→Yi (t)

Xi (t) ),

NYi(t)→Xi(t) = − NXi(t)→Yi(t)(t)

Using stochastic or deterministic simulation, the disease trans-
mission model produces daily incidence and prevalence in each 
compartment over the course of the simulation. 

4.2.2. The observation model 
In most real-life cases, the simulated incidence and prevalence are 

not directly observable. Within gempyor, it is possible to define an 
observation model that computes the observable quantities of interest 
from these variables. Typically, an observation model describes the 
process through which some subset of individuals from a source 
compartment is "observed’’, to compare simulations to ground truth 
data. For example, in the context of a model for an infectious disease like 
COVID-19, observable variables may include reported cases, hospitali-
zations, and deaths, but also virus concentration in wastewater or 
serostatuses. 

The source of an observable variable is either a result of the epidemic 
model (e.g., the prevalence or the incidence in any set of compartments) 
or another already defined observable variable (e.g., intensive care pa-
tients drawn from hospitalized patients). Several pathways can lead to a 
single observable variable (e.g., pathways to death from infection can 
occur following hospitalization or from outside the healthcare system). 

Mathematically, we generate an observable variable Hi(t) from a 
source variable Xi(t) as a transition defined by three time-varying pa-
rameters: a probability pi(t), its delay qi(t), and an optional duration 
di(t). We draw individuals from the source with the given probability 
after the specified delay. For some outcomes, particularly those related 
to healthcare capacity (e.g., hospitalization, ICU occupancy), we also 
compute the prevalence in this outcome using the specified duration. 
For stochastic simulations, the incidence of the observable H in sub-
population i is computed as: 

ΔHi(t) = Binom(Xi(t − qi(t) ), pi(t) ).

Similarly, for deterministic simulations we compute: 

ΔHi(t) = pi(t)⋅Xi(t − qi(t)).

If a duration is specified, the prevalence of the observable is written 
as: 

Hi(t) =
∑t

τ=t− di(t)

ΔH(τ).

Fig. 3. Compartmental and population structure of an example flepiMoP model. The fifty US states’ dynamics are coupled through human mobility, estimated here 
using US Census commuting data (edge width is the number of daily commuters between each state pair, the node size represents the state population, and the node 
color is the percent of individuals with interstate mobility). In each state, we model compartments for each variant, age category, and vaccination status. We 
highlight transitions between compartments for unvaccinated individuals less than 18 years old and indicate the possible transitions to other layers as dashed lines 
around compartments (possible vaccinations). Susceptible (S) can be exposed (E), and then infected (I) by different variants (w for wildtype, α for Alpha, δ for Delta, 
and o for Omicron), before waning a fraction of their immunity (W). The possible re-infections are color-coded to keep this diagram tractable. 
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The main benefit of separating the computation of the observation 
process from the disease transmission simulation is the possibility of 
defining several observation models over the same (computationally 
costly) epidemic simulation scenario. Moreover, observable variables 
are defined with arbitrary delay and duration distributions, which 
naturally derive from observations of health-reporting practices instead 
of being limited to Erlang-distributed residential times in our mathe-
matical modeling framework. At the time of writing, only point esti-
mates of delay and duration are possible, and ongoing work is being 
conducted to enable functions that are then convolved, e.g., for repre-
senting a long-tailed hospitalization duration. 

4.2.3. Parameters and modifiers 
In the above description, we have used time-varying parameters to 

describe the observation model and the transition rates between com-
partments: the rates and exponent of the epidemic simulation model 
(a.(t), b.(t)) and the probability, delay, and duration of the observation 
modules (p.(t), q.(t), d.(t)). These parameters can be fitted and are 
defined by a fixed value, a distribution, or directly as a spatial time se-
ries. The latter is especially useful for assigning vaccination rates in each 
age group and US state or for covariates such as humidity, which can 
inform the seasonal force of infection for respiratory infections (Shaman 
et al., 2010). 

The value of any parameter can be modified by multiplicative or 
additive modifiers. Each modifier applies to a parameter and changes its 
value in the specified (possibly discontinuous) time intervals and sub-
populations. Several of these modifiers can apply simultaneously. In this 
case, their effect compounds, either additively, multiplicatively or 
multiplicatively as “reductions” depending on the user’s choice. In a 
subpopulation i, a parameter of value pi(t) affected by K modifiers r1

i (t),
…, rk

i (t) has a final value of: 

p∗i (t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pi(t) +
∑K

k=1
rk
i (t), with additive compounding

pi(t)⋅
∏K

k=1
rk
i (t),with multiplicative compounding

pi(t)⋅
∏K

k=1

(
1 − rk

i (t)
)
,with reduction compounding 

For the disease transmission model, we use these modifiers to alter 
the reproductive number to represent NPIs, seasonality, and local vari-
ation in transmission. For the observation model, modifiers may repre-
sent changes in case definition and changes in severity. It is possible to 
define several modifier scenarios within the same configuration file to 
project the impact under different NPIs or to reflect the uncertainty in an 
epidemiological feature. When ground truth data is available for 
observable variables, such as cases or deaths, both the underlying values 
of the parameters and their modifiers can be inferred by flepiMoP’s 
inference engine. 

4.3. flepiMoP inference 

flepiMoP proposes a custom Bayesian inference method inspired by 
Markov Chain Monte Carlo (MCMC) approaches and adapted to the 
particular challenges of large-scale epidemic models. Namely, MCMC 
chains with thousands of simulations take a long time, each model 
simulation taking several minutes, a duration that is prohibitive to the 
daily or weekly model runs that we require for rapid public health 
response. Instead, we exploit parallel computing resources by running a 
large number (typically 300) of short parallel chains, an approach that is 
becoming popular in parameter inference and has seen the development 
of suitable diagnostic criteria (Margossian et al., 2022). Moreover, we 
leverage the particular structure of the metapopulation compartmental 
model: in a spatial subpopulation, the dynamics depend more on the 
location-specific parameters than on the other locations’ dynamics. We 

track two connected parameter chains with their own acceptance ratios:  

• A chimeric (local) parameter chain that progresses independently in 
each region depending on the subpopulation-specific likelihood, and 

• A global parameter chain that evolves based on the combined like-
lihood in all subpopulations. 

When a parameter proposal is rejected at the global level, instead of 
being discarded, its location-specific components may be accepted 
individually in the chimeric chain. 

Our inference algorithm is illustrated in Fig. 4. First, the proposed 
parameter set is drawn from a distribution that depends on the current 
chimeric parameters and we simulate the epidemic dynamics with 
gempyor. Then, the likelihood is computed at the global level, and a 
decision is made based on the ratio of the current parameter likelihood 
to the proposed parameter likelihood. If the proposed parameter is 
accepted, both chains are updated and there is no difference to classical 
MCMC. In the case of a rejection, we exploit the computation already 
done by accepting or rejecting each spatial subpopulation parameter set 
in the chimeric chain. As the subpopulations are only loosely connected, 
it is likely that the algorithm will help generate a better proposal for the 
next iteration. 

We include two optional variations of our algorithm. The first, for 
loosely connected subpopulations, requires that the chimeric decision is 
made even in the case of global acceptance. In this case, a global 
acceptance does not overwrite the chimeric value. The second specifies a 
chimeric-reset frequency to prevent the chimeric chain from drifting too 
far from the global chain. After the chosen number of iterations, the 
chimeric chain is discarded and reset to the global chain. Note that if the 
chimeric-reset frequency is set to 1, the chimeric and global chain are 
equivalent and our inference engine acts as a classical MCMC scheme. In 
this case, all the theoretical convergence properties apply. 

By default (when the chimeric-reset frequency is not set to 1), our 
method is not proven to converge towards the actual posterior distri-
bution and offers no formal convergence guarantee for the short parallel 
chains we are using. However, we have reached a decent amount of 
empirical success – faster and more accurate calibration – compared to 
classical MCMC methods (Cramer et al., 2022b; Howerton et al., 2023). 
However, for use cases where theoretical convergence properties are 
necessary, we recommend the usage of the provided classical MCMC 
implementation (chimeric-reset frequency is set one) until we further 
develop the inference algorithm and our diagnostic tools. 

In addition to gempyor’s parameters and modifiers, our inference 
algorithm is able to calibrate the number and the dates of foreign in-
troductions (epidemic seeding) for each different SARS-CoV-2 variant 
over time. For the SMH, we inform most parameters from the literature 
(e.g., vaccine-induced protection against infection or death, age- 
dependent severity rate) in order to keep the parameter space to a 
reasonable dimensionality and improve identifiability. In the SMH 
Round 14, a total of 5720 parameters (not counting seeding), more than 
100 parameters per US state, are fitted. This includes the infection-to- 
case ratio, the impact of NPIs, seasonality, and local variation in trans-
missibility. In the SMH Round 17 and in the example provided below, 
we fit our model to weekly-aggregated reported counts of hospitaliza-
tions for each US state from the U.S. Department of Health & Human 
Services (HHS), and deaths from the National Center for Health Statistics 
Mortality Surveillance System (reported in FluView) adjusted for variant 
prevalence estimates from CoVariants.org (Hodcroft, 2021). 

5. Operational workflow 

It is difficult to adapt a large-scale mechanistic model to rapidly 
changing epidemic dynamics and a shifting information landscape. fle-
piMoP proposes a comprehensive operational workflow in order to 
deliver up-to-date projections based on the latest available data. First, 
one may resume an inference run from a previous calibration. 
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Parameters that were already defined in a previous run are set to start at 
their last inferred values (fit during the previous run) while any newly 
introduced parameter is drawn from the initial distribution defined in 
the model configuration. Moreover, flepiMoP also allows one to continue 
a run from a previous run, taking as initial conditions the prevalence in 
every compartment for a certain date. For example, once satisfied with 
our fits from 2020–2022, we are able to run only the 2023 time period, if 
model assumptions are unchanged. Finally, we defined a precise book-
keeping and preservation workflow that is implemented in our batch 
submissions script for AWS Batch and Slurm HPCs. At every run, we 
store the model output along with metadata containing the exact flepi-
MoP and data versions, the key files to reproduce the run (e.g., the 
ground truth data), and a description of the run features (e.g., resume, 
continuation). Upon completion, the model output is uploaded to AWS 
S3 for future resumes and automatically post-processed for quick 
interpretation and analysis. These processed outputs are shared with the 

modeling team on Slack with a provided bot, flepiBot. 
As described in Fig. 5, we have extensively exploited these continu-

ation-resume features as the landscape of variants, vaccinations, and NPIs 
has evolved throughout the COVID-19 pandemic response. We make 
regular updates to model structures, assumptions, and parameters. 
These updates are usually synced with rounds of the SMH and require 
longer calibration chains. In between, we provide weekly real-time 
forecasts (e.g., for submission to the FCH) with shorter calibration and 
small, compounding adjustments to the fit, with weekly updated 
epidemiological data. This approach has an added benefit as a rough 
approximation of a manual filtering algorithm: parameters are pro-
gressively defined as the data to characterize them becomes available, 
while other parameters are either already reasonably identified or not 
yet present. As such, the complexity of the mechanistic model formu-
lation grows organically alongside the pandemic complexity, enabling 
only incremental updates of the epidemiologic assumptions and model 

Fig. 4. Diagram of the custom multi-level MCMC method used for parameter inference in flepiMoP. This diagram represents a single MCMC chain, though multiple 
parallel chains are typically run and combined to form a posterior distribution of parameter values. Each square represents a single subpopulation that has a set of 
associated parameter values, and a dark black outline represents a partial acceptance from the previous iteration. The line at the bottom of each set of subpopulations 
represents the overall likelihood evaluation. Some parameters affect several (possibly all) subpopulations and are accepted on global acceptance). 

Fig. 5. : The operational workflow that allows flepiMoP to provide real-time projections of epidemics. The final value of our parallel chains is used as the 
initial conditions for latter fits. The size of the run is indicated as (number of parallel chains)x(number of iterations per chain). 
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and a distributed computational workload. 
This operational workflow allows us to use the best available data 

and evidence to produce regular forecasts and projections of scenarios 
for decision-makers. We are able to take advantage of every single model 
evaluation and guarantee the reproducibility of our outputs while 
regularly updating the underlying model assumptions. 

6. Showcase: modeling COVID-19 transmission in the US from 
January 2020 to June 2022 

For this example, we used flepiMoP to model the first two years of 
COVID-19 transmission in the US, from January 1, 2020 to March 26, 
2022. The compartments are described above in the table in the 
Compartment structure section. The global transmission rate param-
eter R0 is modified at the state level by a variant-specific “local” trans-
mission modifier and monthly seasonal modifiers, enabling calibrated 
shared inherent transmissibility with state-specific variability. The 
transmission rate is further modified within each state by parameters for 
the non-pharmaceutical interventions (phases of lockdown, reopening, 
and control measures in each state) defined from data we collected 
throughout the pandemic (built from data from the Johns Hopkins 
University Coronavirus Resource Center, the New York Times, and the 
COVID Analysis and Mapping of Policies project). The inferred 
state-specific variability and the NPI adjustments are shown in Fig. 6. 
Transmissibility and immunity are also modified by variants (Alpha, 
Delta, and Omicron), which are introduced into the model through 
seeding. 

Age-specific vaccination is introduced from December 2020. Each 
successive dose is tracked and these have varied impacts on suscepti-
bility through differences in vaccine effectiveness by variant. Immunity 
is further modified by cross-protection estimates based on variant, 
vaccination status, and waning, which is assumed to occur after a me-
dian of six months (Goldberg et al., 2022; Lumley et al., 2021). The 
observation model computes the cases, hospitalizations, and deaths for 
each age group and variant (i.e., these rates are age-group and 

variant-specific, and time-varying to match changes in case definitions 
and reporting procedures). 

Finally, the inference is performed simultaneously on the weekly 
incident (non-variant) death and variant-specific hospitalization counts 
for each location with ground truth data from HHS and FluView, 
respectively. Due to the construction of this model and the defined 
“interventions” and periods we fit throughout, we are able to explicitly 
characterize the effects of each and the overall changing transmission 
within each location. The heterogeneity in transmission rate across 
states and over the duration of the pandemic can be seen in Fig. 6. This is 
based on seasonally adjusted variation between states (shown in blue in 
Fig. 6), as well as due to differences in implementation of NPIs in 
different states (shown in yellow in Fig. 6). 

We also present our model fits for an example state (Massachusetts) 
in Fig. 7. We show the overall fit of multiple chains (Fig. 7A), as well as 
the variant-specific individual trajectories of each chain (Fig. 7B) for 
model outcomes showing infections, cases, hospitalizations, and deaths. 
Note that, as above, we only perform inference on hospitalization and 
death data. 

7. Conclusions 

After three years of continuous usage and over 1500 inference runs, 
flepiMoP is now entering a mature stage with a stable feature set, and we 
are releasing it along with comprehensive documentation. This 
modeling framework is aimed at enabling researchers and public health 
professionals to quickly build complex, large-scale mechanistic models 
of infectious disease transmission. As was experienced during the 
COVID-19 pandemic, and is now being seen with influenza and RSV, 
models like flepiMoP can provide highly valuable insights for evidence- 
based decision-making during both epidemic and endemic periods 
(Borchering et al., 2023). The most important feature of flepiMoP is its 
flexibility to adapt to most epidemiological events through only a 
modified configuration file and input data, without requiring changes to 
the core model or other features. This adaptability has been successfully 

Fig. 6. Modifiers of the COVID-19 transmission rate inferred by flepiMoP from January 1, 2020 to March 26, 2022. We derive the spatiotemporal heterogeneity of our 
projections from the effect of the NPI (yellow line: median inferred value for each state, while the US mean is shown with the 50% and 95% confidence interval) and 
the seasonality adjusted with local variance (blue line). 
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demonstrated in our modeling of other pathogens, such as seasonal 
influenza (Flu Scenario Modeling Hub, 2022). The workflow described 
in this paper, leveraging flepiMoP’s ability to resume its calibration chain 
has enabled us to effectively track the evolving course of the pandemic. 

Nevertheless, while the framework has shown remarkable flexibility 
to meet ever-changing demands, there are still areas that require further 
development and improvement. Despite its empirical performance, the 
lack of clear information on the theoretical convergence of our inference 
engine is an important aspect that needs to be addressed. For this, we are 
looking into the recent development of diagnosis tools for parallel 
MCMC (Margossian et al., 2022). Moreover, we plan to build an 
abstraction layer between the parameter structure of flepiMoP and 
standard statistical inference libraries in Python. This would allow a user 
to choose between different inference algorithms depending on the 
desired properties of their use case. Additionally, with the constrained 
time during the pandemic, we have not fully explored or refined each 

component or assumption in the framework. We are actively working to 
improve these areas. For example, we recently simplified the configu-
ration file and developed a command line interface that greatly 
streamlines the access to each of the modules within flepiMoP. 

Another major focus of flepiMoP development is to improve acces-
sibility for potential users, beyond the typical walls of scientific 
research. The demonstrated use of flepiMoP in different disease appli-
cations and at different spatial scales has proven its potential. In efforts 
to improve accessibility we have simplified the installation process by 
reducing flepiMoP dependencies and provided documentation and ex-
amples for its installation and use on all major platforms. We have also 
switched internal discussions to public issues on GitHub to include users 
and dialogue from other users. More broadly, we are continuing to 
simplify the configuration file syntax and keep the provided documen-
tation up to date. 

flepiMoP has proven its value in providing rapid development and 

Fig. 7. Model fits to ground truth data for Massachusetts, USA, January 1, 2020 to March 26, 2022. We fit flepiMoP to reported incident counts of hospitalizations 
and deaths for the full US; here we show the results for Massachusetts. In post-production, we produce both (A) weekly quantiles (B) weekly trajectories of simu-
lations. Here we see both the overall fit (A) and the (B) variant-specific trajectories match well with ground truth data (in red) (trajectories: blue = wild type, purple 
= Alpha variant, orange = Delta variant, green = Omicron variant). The dashed line is the end of the fitting period of these simulations. 
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application of disease-appropriate mathematical models and projections 
for infectious diseases. Its maturity and adaptability make it a valuable 
tool for researchers and policymakers alike. While improvements are 
still needed, we are confident that the framework’s current capabilities 
and its open-source nature will contribute to the continued advance-
ment of infectious disease modeling for a wide range of pathogens and 
demographic contexts. 

Data 

flepiMoP is an open-source software governed by GPL v3.0 license. It 
can be found at https://github.com/HopkinsIDD/flepiMoP/. Docu-
mentation and additional information can be found at flepimop.org. 
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Martin, S., Omar, F., David, C., Mailles, A., Carrat, F., Cauchemez, S., Fontanet, A., 
2023. SARS-CoV-2 incubation period across variants of concern, individual factors, 
and circumstances of infection in France: a case series analysis from the ComCor 
study. Lancet Microbe 4, e409–e417. https://doi.org/10.1016/S2666-5247(23) 
00005-8. 

Goldberg, Y., Mandel, M., Bar-On, Y.M., Bodenheimer, O., Freedman, L.S., Ash, N., Alroy- 
Preis, S., Huppert, A., Milo, R., 2022. Protection and Waning of Natural and Hybrid 
Immunity to SARS-CoV-2. N. Engl. J. Med. 386, 2201–2212. https://doi.org/ 
10.1056/NEJMoa2118946. 

Hodcroft, E., 2021. CoVariants: SARS-CoV-2 Mutations and Variants of Interest [WWW 
Document]. URL 〈https://covariants.org/〉 (Accessed 18 August 2023). 

Howerton, E., Contamin, L., Mullany, L.C., Qin, M., Reich, N.G., Bents, S., Borchering, R. 
K., Jung, S., Loo, S.L., Smith, C.P., Levander, J., Kerr, J., Espino, J., Panhuis, W.G. 
van, Hochheiser, H., Galanti, M., Yamana, T., Pei, S., Shaman, J., Rainwater- 
Lovett, K., Kinsey, M., Tallaksen, K., Wilson, S., Shin, L., Lemaitre, J.C., Kaminsky, J., 
Hulse, J.D., Lee, E.C., McKee, C., Hill, A., Karlen, D., Chinazzi, M., Davis, J.T., 
Mu, K., Xiong, X., Piontti, A.P. y, Vespignani, A., Rosenstrom, E.T., Ivy, J.S., 
Mayorga, M.E., Swann, J.L., España, G., Cavany, S., Moore, S., Perkins, A., 
Hladish, T., Pillai, A., Toh, K.B., Longini, I., Chen, S., Paul, R., Janies, D., Thill, J.-C., 
Bouchnita, A., Bi, K., Lachmann, M., Fox, S., Meyers, L.A., Consortium, U.C.-19 M., 
Srivastava, A., Porebski, P., Venkatramanan, S., Adiga, A., Lewis, B., Klahn, B., 
Outten, J., Hurt, B., Chen, J., Mortveit, H., Wilson, A., Marathe, M., Hoops, S., 
Bhattacharya, P., Machi, D., Cadwell, B.L., Healy, J.M., Slayton, R.B., Johansson, M. 
A., Biggerstaff, M., Truelove, S., Runge, M.C., Shea, K., Viboud, C., Lessler, J., 2023. 
Informing pandemic response in the face of uncertainty. An evaluation of the U.S. 
COVID-19 Scenario Modeling Hub. https://doi.org/10.1101/2023.06.28.23291998. 

Hurtado, P.J., Kirosingh, A.S., 2019. Generalizations of the “Linear Chain Trick”: 
Incorporating more flexible dwell time distributions into mean field ODE models. 
J. Math. Biol. 79, 1831–1883. https://doi.org/10.1007/s00285-019-01412-w. 

Johns Hopkins University, Bloomberg Center for Government Excellence, 2020. Johns 
Hopkins Coronavirus Resource Center Dataset. 

Kerr, C.C., Stuart, R.M., Mistry, D., Abeysuriya, R.G., Rosenfeld, K., Hart, G.R., Núñez, R. 
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