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Abstract

Background

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Coronavirus Disease 2019 (COVID-19) continues to cause significant hospitalizations and

deaths in the United States. Its continued burden and the impact of annually reformulated

vaccines remain unclear. Here, we present projections of COVID-19 hospitalizations and

deaths in the United States for the next 2 years under 2 plausible assumptions about

immune escape (20% per year and 50% per year) and 3 possible CDC recommendations

for the use of annually reformulated vaccines (no recommendation, vaccination for those

aged 65 years and over, vaccination for all eligible age groups based on FDA approval).
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Methods and findings

The COVID-19 Scenario Modeling Hub solicited projections of COVID-19 hospitalization

and deaths between April 15, 2023 and April 15, 2025 under 6 scenarios representing the

intersection of considered levels of immune escape and vaccination. Annually reformulated

vaccines are assumed to be 65% effective against symptomatic infection with strains circu-

lating on June 15 of each year and to become available on September 1. Age- and state-

specific coverage in recommended groups was assumed to match that seen for the first (fall

2021) COVID-19 booster. State and national projections from 8 modeling teams were

ensembled to produce projections for each scenario and expected reductions in disease

outcomes due to vaccination over the projection period.

From April 15, 2023 to April 15, 2025, COVID-19 is projected to cause annual epidemics

peaking November to January. In the most pessimistic scenario (high immune escape, no

vaccination recommendation), we project 2.1 million (90% projection interval (PI)

[1,438,000, 4,270,000]) hospitalizations and 209,000 (90% PI [139,000, 461,000]) deaths,

exceeding pre-pandemic mortality of influenza and pneumonia. In high immune escape sce-

narios, vaccination of those aged 65+ results in 230,000 (95% confidence interval (CI)

[104,000, 355,000]) fewer hospitalizations and 33,000 (95% CI [12,000, 54,000]) fewer

deaths, while vaccination of all eligible individuals results in 431,000 (95% CI: 264,000–

598,000) fewer hospitalizations and 49,000 (95% CI [29,000, 69,000]) fewer deaths.

Conclusions

COVID-19 is projected to be a significant public health threat over the coming 2 years.

Broad vaccination has the potential to substantially reduce the burden of this disease, sav-

ing tens of thousands of lives each year.

Author summary

Why was this study done?

• While Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is likely to

pose a persistent threat to public health for the foreseeable future, regular revaccination

with reformulated vaccines is considered a prominent mitigation tool.

• Questions exist regarding the effectiveness of annual vaccination campaigns and the

optimal target age ranges, given the concentration of severe Coronavirus Disease 2019

(COVID-19) outcomes in older populations.

• The US COVID-19 Scenario Modeling Hub (SMH) has provided projections on the

unfolding of the COVID-19 epidemic under various conditions, summarizing the

results of multiple teams working on the same set of scenarios.

• Informed decisions on future vaccination policy need to be made with well-grounded

projections of the likely course of COVID-19 epidemics and its impact under different

vaccination scenarios.
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What did the researchers do and find?

• Applying the SMH approach, we projected the potential impact of COVID-19 from

April 2023 to April 2025 and assessed the extent to which vaccination can reduce hospi-

talizations and deaths.

• Under plausible assumptions about viral evolution and waning immunity, COVID-19

will likely cause annual epidemics peaking in November to January over the two-year

projection period.

• Though significant, hospitalizations and deaths are unlikely to reach levels seen in previ-

ous winters.

• The projected health impacts of COVID-19 are reduced by 10% to 20% through moder-

ate use of reformulated vaccines.

What do these findings mean?

• COVID-19 is projected to remain a significant public health threat in the coming years,

exceeding the pre-pandemic mortality of influenza and pneumonia.

• Annual vaccination can reduce morbidity, mortality, and strain on health systems.

• While the projected impact of annual vaccination is significant, it is conditional on sce-

nario assumptions including vaccine coverage and effectiveness.

Introduction

Three and a half years after the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-

CoV-2) virus first emerged in Wuhan, China, it seems the global community has transitioned

from confronting Coronavirus Disease 2019 (COVID-19) as a pandemic emergency to manag-

ing it as an endemic, seasonally recurring virus [1]. While widespread immunity against

SARS-CoV-2 has been achieved globally through vaccination and infections [2], the continued

evolution of the virus causes antigenic changes and raises the potential for recurrent epidemics

[3,4]. Current evidence suggests that both patterns of human contact and environmental fac-

tors contribute to seasonality in the intensity of SARS-CoV-2 transmission [5–7]. Combined,

seasonality and ongoing “antigenic drift (i.e., gradual genetic changes in a virus evading prior

population immunity [8])” of SARS-CoV-2 make it highly likely that the virus will pose a per-

sistent threat to public health for the foreseeable future.

Going forward, one of the main tools for mitigating the impact of annual COVID-19 epi-

demics will be vaccination. As with influenza [9,10], continued antigenic drift of SARS-CoV-2

and intrinsic waning of the protection offered by previous vaccinations and infections (i.e.,

loss of immunity due to waning of immune protection, independent of the evolution of the

virus) means regular revaccination with reformulated SARS-CoV-2 vaccines will be needed to

mitigate the virus’s impact [11]. However, legitimate questions exist about how effective

annual vaccination campaigns can be, given SARS-CoV-2’s rapid evolution, and what age

ranges should be targeted, given the concentration of severe COVID-19 outcomes in older

populations [12]. Hence, well-grounded projections of COVID-19’s impact under different

vaccination scenarios help inform future vaccination policy.
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The US COVID-19 Scenario Modeling Hub (SMH) is a long-standing multi-team model-

ing effort that aims to project how the COVID-19 epidemic is likely to unfold in the mid- to

long-term under various conditions [13,14]. These planning scenarios contrast various inter-

ventional strategies, characteristics of future viral variants, and other epidemiological or

behavioral uncertainties, to provide projections of COVID-19 hospitalizations and deaths

under each set of assumptions. By summarizing the results of multiple teams working on the

same set of scenarios, the SMH takes advantage of the proven increased reliability of ensem-

ble-based predictions over individual models [15]. Ensemble approaches have proven useful in

multiple fields and across pathogens to inform public health policy, situational awareness, and

individual decision-making [13].

Here, we present the results of applying the SMH approach to project the likely course of

the COVID-19 epidemic in the United States over a two-year period (April 15, 2023 to April

15, 2025) under different assumptions about the average speed of antigenic drift and possible

recommendations for the use of reformulated annual COVID-19 vaccines from the Centers

for Disease Control and Prevention (CDC).

Methods

To estimate the potential impact of vaccination on COVID-19 hospitalizations and deaths, we

invited multiple teams in an open call to provide 2 years of projections for 6 scenarios within

the SMH framework [14,15]. Teams had broad discretion in the details of model implementa-

tion within scenario definitions (see below). Individual team projections were combined to

produce ensemble projections for each scenario as well as an ensemble estimate of the expected

impact of vaccination.

Scenario definitions

Six scenarios were created representing the intersection of 2 axes: one representing the average

speed of antigenic drift (i.e., immune escape) over the two-year projection period, and the sec-

ond representing differing assumptions about CDC recommendations for, and uptake of, a

reformulated SARS-CoV-2 vaccine. The antigenic drift axis consisted of (1) a “low immune

escape” scenario, where the SARS-CoV-2 virus evolves away from the immune signature of

circulating variants at a rate of 20% per year (e.g., a vaccine with efficacy against symptomatic

infection of 65% on June 15, 2023, is assumed to have an efficacy of 0.8 × 0.65 = 52% 1 year

later in the absence of immune waning); and (2) a “high immune escape” scenario with an

immune escape rate of 50% per year. The implementation of immune escape in their models

was left at the discretion of teams (e.g., continuously or in stepwise occurrences; S1 Table)

while ensuring that the annual levels align with the scenario definition.

The vaccination axis consisted of 3 levels based on possible COVID-19 vaccine recommen-

dations under consideration by the CDC Advisory Committee on Immunization Practices

(ACIP): (1) no recommendation for annual vaccination with a reformulated vaccine; (2) a rec-

ommendation for those aged 65 and above (65+); and (3) a recommendation for all ages eligi-

ble for vaccination based on the US Food and Drug Administration (FDA) approval [16].

Across all scenarios, the vaccine is assumed to be reformulated to match the predominant vari-

ants circulating as of June 15 each year and to become available to the public on September 1

of the same year. The annual uptake of reformulated vaccines in recommended groups is pro-

jected to follow the age group specific (0–17, 18–64, and 65+) uptake patterns observed for the

first booster dose in each state (i.e., the first additional dose of vaccines after completing the

primary series, authorized in September 2021) [17]. Uptake is assumed to saturate at levels

reached 1 year after the recommendation (full uptake assumptions available on GitHub [18];
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corresponding to 9% coverage in ages 0 to 17, 33% in 18 to 64, and 65% in 65+ nationally).

Reformulated vaccines are presumed to have 65% vaccine effectiveness against symptomatic

disease at the time of reformulation and immediately after receipt, with protection declining

based on waning immunity and antigenic drift. This assumption was derived from a prior

study showing a 60% vaccine effectiveness against emergency department encounters of the

bivalent mRNA vaccine (fall 2022) [19], while considering potential underestimation due to

immune waning and unreported previous SARS-CoV-2 antigen exposures. Vaccine effective-

ness against severe outcomes was at the teams’ discretion based on their best insights

(S1 Table).

All contributing models were directed to incorporate waning immunity, with a require-

ment that the median waning time of protection against infection aligned with the designated

range of 3 to 10 months. Furthermore, the incorporation of SARS-CoV-2 seasonality was

required, though teams had discretion in terms of its implementation without any constraints

on the timing and extent of seasonal forcing (e.g., not restricted to having a single seasonal

peak; S1 Table). Teams were directed not to consider changes in non-pharmaceutical inter-

ventions over the projection period, given their limited implementation in 2023. Full scenario

details are available on GitHub [18].

Ensemble projections

Eight different modeling teams contributed projections of weekly incident and cumulative

COVID-19 hospitalizations and deaths for April 15, 2023 to April 15, 2025 for all states and at

the national level (1 additional team provided projections for only North Carolina based on

their interest). Each team provided up to 100 representative epidemic trajectories for each sce-

nario and outcome. Trajectories were used to generate a probability distribution of incident

outcomes each week. Distributions at each week were combined using the trimmed-linear

opinion pool method (LOP) to create ensemble projections (2 outermost values were trimmed

while assigning equal weight to all remaining values) [15,20–22]. All reported numbers for

incident and cumulative deaths and hospitalizations, and associated projection intervals (PIs),

come from this ensemble.

To estimate the expected impact of vaccination, the mean and variance in cumulative

deaths and hospitalizations were calculated over the period of interest based on submitted tra-

jectories. Within each individual model, the expected impact of vaccination was determined

by calculating the difference, or ratio, of projected deaths and hospitalizations between differ-

ent vaccination scenarios sharing the same rate of immune escape, with variances estimated

using the Delta method [23]. These individual model level estimates were then combined to

produce an ensembled estimate of expected vaccine impact and associated confidence intervals

(CIs) using standard meta-analysis techniques (with a random effects model) as implemented

in the R package “metafor” [24,25]. We note that in estimating vaccine impact we (1) take the

vaccine impacts estimated by each model and then ensemble those (rather than looking at the

impact in ensemble estimates); and (2) use different techniques in combining vaccine impact

estimates aimed at getting expected values and confidence intervals (rather than predictions

intervals). Hence, vaccine impacts estimated from the meta-analysis are not directly reproduc-

ible by comparing ensemble projections for each scenario (which are not mathematically

equivalent).

Results

Based on the ensemble of projections from 8 contributing models under plausible assumptions

about the viral evaluation and annual vaccination recommendations from the CDC, we project
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that between April 15, 2023 and April 15, 2025, the United States will experience annual

COVID-19 epidemics peaking between November and January and causing approximately 1

million cumulative hospitalizations and 100,000 cumulative deaths each year (Fig 1 and

Table 1). The extent of COVID-19 impact over this period varies significantly by scenario,

with 1.4 million (90% PI [983,000, 1,947,000]) hospitalizations and 130,000 (90% PI [71,000,

201,000]) deaths over the two-year projection period in the most optimistic scenario (reformu-

lated vaccines recommended for all individuals, 20% immune escape) and 2.1 million (90% PI

[1,438,000, 4,270,000]) hospitalizations and 209,000 (90% PI [139,000, 461,000]) deaths in the

most pessimistic scenario (no recommendation, 50% immune escape) (S1 Fig). While signifi-

cant, even in the most pessimistic scenario, we project deaths and hospitalizations are unlikely

to be as high as the peak weekly hospitalizations seen in the first Omicron wave in early 2022

(150,000 hospitalizations per week). Furthermore, projected weekly hospitalizations are likely

to remain at or below CDC-designated medium community transmission levels (10 to 19

weekly hospitalizations per year) [26] across all scenarios (Fig 1). There is moderate variation

between states in peak timing and size of COVID-19 epidemic waves, although most generally

follow national trends (S2 and S3 Figs).

Ensemble projections indicate that annual vaccination has the potential to substantially reduce

both hospitalizations and deaths from COVID-19 (Fig 2). In high immune escape scenarios, if

vaccination is confined to 65+, and uptake patterns mirror what was seen for the first booster

Fig 1. ProjectedAU : AbbreviationlistshavebeencompiledforthoseusedinFigs1to4andTable1:Pleaseverifythatallentriesarecorrect:weekly COVID-19 hospitalizations in the United States across scenarios, April 2023–April 2025. Ensemble projections from the COVID-

19 SMH of national COVID-19 hospitalization for the period April 2023–April 2025 are shown by scenario. Dots indicate the observed weekly hospitalizations

between December 1, 2022 and December 16, 2023. Shading from lightest to darkest represents 90%, 80%, and 50% projection intervals. Red dashed lines

correspond to the CDC-designated COVID-19 community-level indicators: medium (10–19 weekly hospitalizations per 100,000) and high (>20 weekly

hospitalizations per 100,000) levels. The vertical line on April 15, 2023, marks the start of the projection period. COVID-19, Coronavirus Disease 2019; SMH,

Scenario Modeling Hub.

https://doi.org/10.1371/journal.pmed.1004387.g001
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dose, we would expect a reduction in hospitalizations of 8% (95% CI [5, 12]) compared to the no

vaccination scenario and a reduction in deaths of 13% (95% CI [7, 18]). This corresponds to abso-

lute reductions of 230,000 (95% CI [104,000, 355,000]) hospitalizations and 33,000 (95% CI

[12,000, 54,000] deaths across the entire United States over the two-year projection period.

Expanding vaccination recommendations to all individuals would lead to substantial addi-

tional reductions in deaths and hospitalizations (Fig 2). Under the assumption that coverage

equivalent to the first booster dose is attained, vaccination of all individuals reduces hospitali-

zations by 9% (95% CI [5, 13], N = 198,000, 95% CI [120,000, 276,000]) and deaths by 8%

(95% CI [3, 14], N = 16,000, 95% CI [11,000, 22,000]) compared to vaccination of 65+ alone in

high immune escape scenarios. This corresponds to a total reduction of 17% (95% CI [12, 22],

N = 431,000, 95% CI [264,000, 598,000]) in hospitalizations and 20% (95% CI [12, 28],

N = 49,000, 95% CI [29,000, 69,000]) in deaths compared to the no vaccination scenario.

Results are similar in low immune escape scenarios.

A significant factor contributing to state-level variation in the projected impact of vaccine

recommendations is the assumed uptake level of reformulated vaccines (Figs 3, S4, and S5).

States with higher coverage among 65+ are anticipated to experience substantial reductions in

hospitalizations, exceeding 150 per 100,000 in high immune escape scenarios, if the reformu-

lated vaccines are recommended to all. In contrast, the state with the lowest coverage in 65+,

North Carolina, is expected to witness reductions of less than 75 per 100,000.

Discussion

Based on the ensemble of projections from 8 modeling teams for the next 2 years (April 2023

to April 2025), it is expected that COVID-19 will remain a persistent public health threat in the

Table 1. Projected national peak timing and peak size of hospitalizations across scenarios.

April 15, 2023–April 14, 2024 April 15, 2024–April 15, 2025

Scenario Peak timing Peak size Total

hospitalizations

Total deaths Peak timing Peak size Total

hospitalizations

Total deaths

High immune escape

No booster

recommendation

Dec 10 (Oct

15–Apr 14)

42,000

(18,000–

105,000)

1,017,000 (767,000–

2,058,000)

100,000

(68,000–

217,000)

Dec 15 (Oct

13–Apr 13)

45,000

(17,000–

90,000)

1,093,000 (670,000–

2,211,000)

108,000

(71,000–

244,000)

Booster recommended

for 65+

Dec 10 (Oct

15–Feb 7)

39,000

(17,000–

91,000)

943,000 (689,000–

1,859,000)

94,000

(55,000–

178,000)

Dec 15 (Oct

13–Feb 23)

41,000

(16,000–

77,000)

1,049,000 (584,000–

1,959,000)

99,000

(67,000–

189,000)

Booster recommended

for all

Dec 10 (Oct

8–Feb 18)

35,000

(15,000–

91,000)

836,000 (595,000–

1,723,000)

82,000

(53,000–

173,000)

Dec 8 (Jun

9–Feb 19)

32,000

(14,000–

77,000)

949,000 (606,000–

1,741,000)

89,000

(64,000–

182,000)

Low immune escape

No booster

recommendation

Dec 13 (Aug

13–Apr 14)

36,000

(16,000–

81,000)

825,000 (676,000–

1,169,000)

79,000

(57,000–

124,000)

Dec 29 (Oct

27–Apr 13)

35,000

(14,000–

76,000)

956,000 (578,000–

1,304,000)

85,000

(49,000–

166,000)

Booster recommended

for 65+

Dec 10 (Aug

13–Feb 18)

34,000

(15,000–

68,000)

767,000 (620,000–

1,020,000)

70,000

(45,000–

111,000)

Dec 22 (Oct

27–Mar 9)

32,000

(13,000–

65,000)

857,000 (485,000–

1,128,000)

80,000

(34,000–

109,000)

Booster recommended

for all

Dec 3 (Apr

30–Mar 3)

26,000

(13,000–

57,000)

670,000 (487,000–

920,000)

63,000

(38,000–

101,000)

Dec 15 (Jun

12–Mar 9)

28,000

(12,000–

51,000)

717,000 (496,000–

1,027,000)

67,000

(33,000–

100,000)

Each value represents the median projection with 90% PI below.

PI, projection interval.

https://doi.org/10.1371/journal.pmed.1004387.t001
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United States for the foreseeable future. Nevertheless, our projections highlight that annual

vaccination with reformulated vaccines can substantially mitigate this burden if coverage

reaches levels observed for the first (i.e., fall 2021) COVID-19 booster.

Across all scenarios, our projections indicate that COVID-19 hospitalizations and deaths

would be substantially less than what was seen in the early stages of the pandemic (e.g.,

between April 2021 and April 2023, there were 4.2 million hospitalizations and 570,000 deaths

[27]). Nonetheless, COVID-19 is projected to remain one of the leading causes of death in the

United States [28]. For context, in our most pessimistic scenario (no CDC vaccine recommen-

dation, high immune escape), annual COVID-19 mortality is expected to be similar to pre-

pandemic mortality from Alzheimer’s disease (Fig 4), while in the most optimistic scenario

(vaccines recommended for all, low immune escape) mortality would be similar to that seen

from diabetes in the pre-pandemic period. In all cases, COVID-19 mortality is projected to

exceed that of influenza and pneumonia.

Fig 2. Percent and total prevented COVID-19 hospitalizations and deaths by annual vaccination recommendation with reformulated vaccines. Relative

and absolute differences in cumulative hospitalizations and deaths over the next 2 years (April 2023–April 2025) between different vaccination

recommendations. Red and blue dots and error bars represent the median and 95% CI of percent prevented outcomes in high and low immune escape

scenarios (50% per year and 20% per year), respectively. CI, confidence interval; COVID-19, Coronavirus Disease 2019.

https://doi.org/10.1371/journal.pmed.1004387.g002
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While the projected impact of annual vaccination on disease burden is significant, it is

highly dependent on assumed vaccine uptake. This gives us reason for both caution and hope.

Previous CDC booster recommendations, including that for the 2022 reformulated vaccine

(i.e., bivalent vaccines authorized in August 2022), have not achieved the coverage observed

for the first booster [29]. Reduced coverage would substantially blunt the impact of any vaccine

recommendations. However, it is worth noting that many states where we assume low vaccina-

tion coverage, such as North Carolina and Pennsylvania, have not historically been ranked

among the states with the lowest vaccine coverage for annual influenza vaccines [30], suggest-

ing potential for increasing vaccine uptake in these regions.

Among 6 considered scenarios, the one with high immune escape (50% per year) and CDC

vaccine recommendation for all age groups aligns most closely with real-world practices. The

CDC advised vaccinating all individuals aged over 6 months on September 12, 2023 [31], and

Fig 3. Relationship between prevented COVID-19 hospitalizations and assumed vaccine coverage in individuals aged 65 and above across US states. The

relationship between the cumulative difference in COVID-19 hospitalizations for the next 2 years (April 2023–April 2025) under different vaccination

recommendations and assumed vaccine uptake among those aged 65 and above (65+) in each US state: (A and B) vaccination of all compared to no

vaccination and (C and D) vaccination of 65+, compared to no vaccination. The x-axis represents the assumed vaccine coverage among 65+ at saturation

considering the higher severity in 65+ (likely to have the most significant contribution to decreasing hospitalizations). Dots in each panel correspond to

individual US states. COVID-19, Coronavirus Disease 2019.

https://doi.org/10.1371/journal.pmed.1004387.g003
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the predominant variant in December 2023 (Omicron EG.5.1) was suggested to have around

17% immune escape compared to the preexisting variant in June 2023 (Omicron XBB.1.5).

This is equivalent to an immune escape of around 40% per year, assuming the same transmis-

sibility between 2 variants [32]. Our ensemble projections in this scenario appear to align well

with the empirically observed national-level hospitalizations, yet some discrepancy was noted

in September to October 2023, primarily attributed to faster resurgences in southern states

[14]. In the discrepancy period, assumptions of vaccine coverage matched well with realized

uptake, suggesting that factors other than vaccine assumptions drove the difference between

observed and projected disease dynamics. We note that later in the fall of 2023, the observed

reformulated vaccine uptake saturated at a lower level than our all-age scenario (although vac-

cine coverage observations are well bracketed by our set of scenarios; S6 Fig). However, state-

level uptake patterns were comparable with the range of scenario assumptions in some states

(S7 Fig) [33], particularly among 65+, who are likely to have significant contributions to

reducing severe outcomes. Of note, our study primarily focuses on projecting the potential

Fig 4. Comparison between the projected COVID-19 mortality by scenario and the 10 leading causes of pre-pandemic mortality in the United States.

Projected COVID-19 mortality by scenario and by period (April 2023–April 2024 and April 2024–April 2025) are compared with the 10 leading causes of

mortality in the United States, which were obtained from the CDC age-adjusted disease burden rates in the pre-pandemic period [28]. COVID-19, Coronavirus

Disease 2019.

https://doi.org/10.1371/journal.pmed.1004387.g004
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advantages of annual vaccination (predicting the likely course of the epidemic given the sce-

nario, rather than forecasting) to inform public health authorizations before the actual vacci-

nation campaign begins; hence, our assumed uptake patterns in any individual scenario may

not necessarily mirror the observed ones. Nevertheless, caution should be exercised when

interpreting our projected hospitalizations and deaths averted by annual vaccination, as these

outcomes are likely somewhat overestimated due to such discrepancies in vaccine uptake pat-

terns. Additionally, in scenarios with vaccination recommendations to all individuals, the

ensemble outperforms individual models, wherein most show either over- or underconfidence

relative to the ensemble (S8 Fig). Such improvement of the ensemble over individual models

aligns with our earlier findings based on prior rounds of SMH projections [15].

Our ensemble projections have potential implications for countries beyond the United

States, where regular revaccination serves as a key strategy against COVID-19. In light of this

global relevance, our projections provide insight into the benefits of annual vaccination in mit-

igating the disease burden, along with related work conducted in the European context [34].

However, it is essential to note that the magnitude of impacts may vary across countries due to

differing epidemiological and demographic factors. In particular, variations in age distribu-

tion, circulating variables, transmission dynamics, and time-varying immunity within each

age group can substantially influence the impact of annual vaccination efforts.

As with any attempt to project into the future, our projections come with major caveats and

limitations. First and foremost, scenario projections are conditional on often strict scenario

assumptions. Both vaccine coverage and effectiveness might deviate considerably from scenario

assumptions, although historical trends of influenza vaccination suggest that achieving higher

coverage is unlikely, especially in older populations [30]. Additionally, for simplicity, most teams

assumed equivalent vaccine effectiveness against infection and symptomatic disease, potentially

underestimating the vaccine impacts by neglecting protection against asymptomatic infections

[35]. Furthermore, our scenarios did not consider interactions with other infectious diseases, but

they may impact our projections if there are significant changes in risk perception or healthcare

burden during the co-circulation of respiratory infectious diseases (e.g., tripledemic in the 2022

to 2023 season [36]). Nevertheless, projections of the combined impact of multiple pathogens for

the 2023 to 2024 season suggest a probable lower impact on the healthcare system compared to

the prior season [37]. Second, the potential impact resulting from variations in the details of the

modeling approach (e.g., seasonality) and parameter values, determined at the teams’ discretion,

were not quantified due to the multi-team and real-time operational nature of the SMH frame-

work. A hub structure is particularly useful when there is valid scientific uncertainty about the

role of specific drivers of disease dynamics, including seasonality. Third, to accommodate diverse

modeling approaches, we focused on aggregated projections of hospitalizations and deaths across

all age groups for each scenario, while the scenarios were designed with different age-specific vac-

cine recommendations. Lastly, if future variants differ in intrinsic transmissibility or disease

severity from that of the current Omicron lineages, the projected disease burden may alter

accordingly. Furthermore, all scenarios were built on the assumption of continuous immune

escape with a constant rate. However, the emergence of new SARS-CoV-2 variants showing a sig-

nificant level of antigenic change within a very short span (e.g., Omicron [38,39]) could increase

the disease burden far beyond these projections.

Despite its limitations, ensembling scenario-based projections from multiple teams has

proven to be useful for estimating COVID-19’s future burden and the potential benefits of vac-

cination, providing valuable information for public health planning [13,15]. Our results show

that COVID-19 will likely remain a major threat to human health in the United States in the

coming years. In the face of this threat, broad vaccination against SARS-CoV-2 has the poten-

tial to save tens of thousands of lives each year.
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Supporting information

S1 Fig. Projected cumulative COVID-19 hospitalizations and deaths in the United States

by scenario, April 2023–April 2025. Ensemble projections for cumulative COVID-19 hospi-

talization and deaths in the United States for the next 2 years (April 2023–April 2025) are

shown by scenario. Solid lines indicate the median of projected outcomes, and dash lines and

shades indicate their 90% projection intervals. Each color represents different annual vaccina-

tion recommendations (no recommendation, reformulated vaccines recommended for those

aged 65 and above, and recommended for all age groups). Dots indicate the observed cumula-

tive hospitalizations and deaths from April 15, 2023 and December 16, 2023.

(TIF)

S2 Fig. State-level peak COVID-19 hospitalizations in high immune escape scenarios by

season and vaccination scenario. The peak hospitalizations per 100,000 over the next 2 years

(April 2023–April 2025) under high immune escape assumption are shown by US state and by

vaccination scenario (no recommendation, reformulated vaccines recommended for those

aged 65 and above, and recommended for all age groups). The color variation denotes the

order of US states in the peak hospitalizations by scenario and season. Shades of yellow indi-

cate states with lower values and shades of blue indicate states with higher values. For visualiza-

tions, square root scaling was applied in x-axes.

(TIF)

S3 Fig. State-level peak timing of COVID-19 hospitalizations in high immune escape sce-

narios by season and vaccination scenario. The peak timing of hospitalizations under high

immune escape assumption is shown by US state and by vaccination scenario (no recommen-

dation, reformulated vaccines recommended for those aged 65 and above, and recommended

for all age groups). The color variation denotes the order of US states in the peak timing of

COVID-19 hospitalizations by scenario and season. Shades of blue indicate states with an ear-

lier peak and shades of yellow indicate states with a later peak.

(TIF)

S4 Fig. State-level percent prevented COVID-19 hospitalizations between the annual vacci-

nation scenarios from April 2023 to April 2025 by scenario. Relative differences in cumula-

tive COVID-19 hospitalizations over the next 2 years (April 2023–April 2025) between

different vaccination scenarios are shown by immune escape level and by US state. The color

variation denotes the order of US states in the percent prevented hospitalizations by scenario.

Shades of yellow indicate states with lower values and shades of blue indicate states with higher

values.

(TIF)

S5 Fig. State-level percent prevented COVID-19 deaths between the annual vaccination

scenarios from April 2023 to April 2025 by scenario. Relative differences in cumulative

COVID-19 deaths over the next 2 years (April 2023–April 2025) between different vaccination

scenarios are shown by immune escape level and by US state. The color variation denotes the

order of US states in the percent prevented deaths by scenario. Shades of yellow indicate states

with lower values and shades of blue indicate states with higher values.

(TIF)

S6 Fig. Comparison between the assumed and observed annual uptake of COVID-19 refor-

mulated vaccines at the national level in the United States. (A) Solid lines represent the

assumed national-level annual uptake of reformulated vaccines by age group, projected to fol-

low the uptake patterns for the first booster dose (authorized in September 2021). Dashed lines
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indicate the empirically observed uptake as of February 24, 2024, sourced from the CDC web-

site, covering Puerto Rico and the Virgin Islands which are not accounted for in the assumed

national-level uptake. Each age group is represented by a different color. (B) Observed and

assumed annual uptake of reformulated vaccines among individuals aged 18 and over at the

national level. Each color represents a different vaccine coverage data.

(TIF)

S7 Fig. Comparison between the assumed and observed annual uptake of COVID-19 refor-

mulated vaccines by US state. Solid lines represent the assumed state-level annual uptake of

reformulated vaccines by age group, projected to follow the uptake patterns for the first

booster dose (authorized in September 2021). Dots indicate the monthly observed uptake as of

February 24, 2024, sourced from the CDC website. Each age group is represented by a different

color.

(TIF)

S8 Fig. Quantile-quantile (QQ) plot for assessing the performance of models regarding

cumulative COVID-19 hospitalizations and deaths in the United States. The actual cover-

age of each model, regarding cumulative hospitalizations and deaths as of December 16, 2023,

is plotted against its expected coverage. Coverage measures the percentage of observations that

fall within a given prediction interval (e.g., for a 90% prediction interval, expected coverage is

90%). Coverage was calculated across all locations and projection weeks. The dashed lines rep-

resent the expected relationship (expected coverage is equal to actual coverage), where a line

below indicates models are overconfident (actual coverage is less than expected coverage), and

above the line means models are underconfident (actual coverage is more than expected cover-

age). The black solid lines depict the ensemble model, while each colored line represents con-

tributing individual models. Following the CDC recommendation for reformulated vaccines

(published on September 12, 2023), only scenarios with vaccination recommendations to all

individuals were included.

(TIF)

S1 Table. Detailed description of individual models.
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