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Title: Evaluation of FluSight influenza forecasting in the 2021-22 and 2022-23 seasons with a 1 
new target laboratory-confirmed influenza hospitalizations 2 

Abstract:  3 

Accurate forecasts can enable more effective public health responses during seasonal influenza 4 
epidemics. Forecasting teams were asked to provide national and jurisdiction-specific 5 
probabilistic predictions of weekly confirmed influenza hospital admissions for one through four 6 
weeks ahead for the 2021-22 and 2022-23 influenza seasons.  7 

Across both seasons, 26 teams submitted forecasts, with the submitting teams varying between 8 
seasons. Forecast skill was evaluated using the Weighted Interval Score (WIS), relative WIS, 9 
and coverage.  10 

Six out of 23 models outperformed the baseline model across forecast weeks and locations in 11 
2021-22 and 12 out of 18 models in 2022-23. Averaging across all forecast targets, the FluSight 12 
ensemble was the 2nd most accurate model measured by WIS in 2021-22 and the 5th most 13 
accurate in the 2022-23 season. Forecast skill and 95% coverage for the FluSight ensemble 14 
and most component models degraded over longer forecast horizons and during periods of 15 
rapid change.  16 

Current influenza forecasting efforts help inform situational awareness, but research is needed 17 
to address limitations, including decreased performance during periods of changing epidemic 18 
dynamics. 19 
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Introduction  83 

Traditional influenza surveillance systems provide a comprehensive picture of influenza activity 84 
in the United States [1, 2, 3] and are fundamental for situational awareness and risk 85 
communication. However, they measure influenza activity after it has occurred, and do not 86 
directly anticipate future trends to inform risk assessment and healthcare preparedness. To 87 
address these limitations, the Centers for Disease Control and Prevention (CDC) has supported 88 
open influenza forecasting challenges since the 2013–14 season [4]. This collaborative process 89 
(named FluSight) has ensured that forecasting targets are relevant to public health. Additionally, 90 
forecast data are openly available, which enables transparent evaluation of forecast 91 
performance [5, 6].   92 

Originally the FluSight collaboration focused on short-term forecasts of outpatient influenza-like-93 
illness (ILI) rates from ILINet [2] and corresponding results have been summarized previously 94 
[4, 5, 6]. However, the COVID-19 pandemic resulted in changes in outpatient care-seeking 95 
behavior, and the continued co-circulation of SARS-CoV-2 has further complicated the 96 
interpretation of ILI data. In the 2021–22 influenza season, the FluSight forecast target shifted to 97 
the weekly number of hospital patients admitted with laboratory-confirmed influenza from the 98 
Health and Human Services (HHS) Patient Impact and Hospital Capacity Data System [7]. This 99 
system was created during the COVID-19 pandemic to gather a complete and unified 100 
representation of COVID-19 disease outcomes along with other metrics related to health care 101 
capacity. Hospitals registered with Centers for Medicare and Medicaid Services (CMS) are 102 
required to report daily COVID-19 and influenza information [8]. Reporting of the influenza data 103 
elements, including the previous day’s number of admissions with laboratory-confirmed 104 
influenza virus infection, became mandatory on February 2, 2022, [8].  105 

The COVID-19 pandemic disrupted the typical timing, intensity, and duration of seasonal 106 
influenza activity in the United States and many parts of the world [9, 10]. Influenza activity was 107 
very low during the 2020–21 season in the U.S., but activity increased during the 2021–22 108 
season, with activity peaking later in April, May, and early June 2022 and remaining at higher 109 
levels than had been reported during these months in previous seasons [10]. In the 2022-23 110 
influenza season, activity began increasing nationally in early October, earlier than previous 111 
seasons [2,3,11], and peaked in early December 2022. In this analysis, we summarize the 112 
accuracy and reliability of ensemble and component 1- to 4-week ahead forecasts submitted in 113 
real-time during the 2021–22 and 2022-23 influenza seasons and identify areas for forecast 114 
improvement.  115 

  116 



4 
 

Methods 117 

Forecasts of weekly influenza hospital admissions were openly solicited from existing COVID-19 118 
and influenza forecasting networks every Monday from January 10, 2022, through June 20, 119 
2022, for the 2021-22 season. For the 2022-23 season, forecasts were solicited every Monday 120 
from October 17, 2022, through January 9, 2023, then every Tuesday from January 17, 2023, 121 
through May 17, 2023. Weeks were defined in terms of MMWR Epiweeks (EW) spanning 122 
Sunday to Saturday [12]. Forecasted jurisdictions included the U.S. national level, all fifty states, 123 
Washington D.C., and Puerto Rico. Forecasts for the Virgin Islands, while requested, were not 124 
included in this evaluation due to low reported hospitalization counts and irregular data 125 
submission. Each week, forecasting teams were asked to provide jurisdiction-specific point 126 
estimates and probabilistic predictions for 1-, 2-, 3-, and 4-week ahead weekly counts of 127 
confirmed influenza hospital admissions. A total of 23 quantiles were requested for the 128 
probabilistic forecasts: 0.010, 0.025, 0.050, 0.100, 0.150, …, 0.950, 0.975, and 0.990. Teams 129 
were not required to submit forecasts for all four weeks ahead or for all locations. Additional 130 
details of the forecast submission process (e.g., file formatting, submission procedures, and 131 
required metadata) are provided in the FluSight-forecast-data GitHub Repository [13]. 132 
 133 
The FluSight Ensemble model was generated for all forecasted jurisdictions each week using 134 
the unweighted median of each quantile among eligible forecasts. Forecasts were considered 135 
eligible for inclusion in the ensemble if they were submitted by 11:59 PM ET on the due date 136 
and if all requested quantiles were provided. Modeling teams could further designate whether a 137 
particular model’s forecasts should be included in the ensemble. If a forecast was designated as 138 
“other”, it was not included in the FluSight ensemble and not evaluated in this manuscript.  139 
 140 
Baseline forecasts and their prediction intervals were generated each week using the simplets R 141 
package [14] based on the incident hospitalizations reported in the previous week. The median 142 
prediction of the baseline forecasts is the corresponding target value observed in the previous 143 
week, and noise around the median prediction is generated using positive and negative 1-week 144 
differences (i.e., differences between consecutive reports) for all prior observations, separately 145 
for each jurisdiction. Sampling distributions were truncated to prevent negative values. The 146 
same median prediction is used for the 1-through 4-week ahead forecasts. Further details on 147 
the generation of the baseline model’s prediction intervals from a smoothed version of this 148 
distribution of differences have been described previously [15,16].  149 
 150 
For inclusion in this analysis, forecasting teams must have submitted greater than or equal to 151 
75% of the requested targets between the forecast evaluation period of February 21, 2022, to 152 
June 20, 2022 (total of 18 weeks) for 2021-22 or October 17, 2022, to May 15, 2023 (total of 30 153 
weeks) for 2022-23. These periods translate to 4-week ahead forecast target end dates of 154 
March 19, 2022, to July 16, 2022 for the 2021-22 season and November 11, 2022, to June 10, 155 
2023 for the 2022-23 season. The start date of the evaluation period for the 2021-22 season 156 
was chosen to be the first forecast date following two weeks of mandatory reporting of 157 
confirmed influenza hospitalizations [8] to minimize potential effects of reporting changes on 158 
forecasts. For 2021-22 and 2022-23, three and 12 models were excluded from the primary 159 
analysis, respectively, for not meeting the inclusion criteria.  160 
 161 
Forecasts were evaluated against the reported number of the previous day’s laboratory 162 
confirmed influenza admissions (Field #34) from the COVID-19 Reported Patient Impact and 163 
Hospital Capacity by State Timeseries [17], with data shifted one day earlier to align with 164 
admission date and then aggregated to the weekly scale (from Sunday to Saturday) [13], using 165 
data as of September 12, 2022, for 2021-22 and June 13, 2023, for 2022-23. This dataset is 166 

https://www.hhs.gov/sites/default/files/covid-19-faqs-hospitals-hospital-laboratory-acute-care-facility-data-reporting.pdf
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subject to revision by submitting facilities; therefore, we analyzed backfill and revision for each 167 
season (Supplemental Analysis 1). For each of the contributed forecasts included in the 168 
analysis, values were rounded to more closely relate the values of prediction intervals of 169 
forecasts to the reported numbers of hospital admissions. In particular, forecast values for 170 
quantiles less than 0.5 were rounded down, values for quantiles greater than 0.5 were rounded 171 
up, and values for the 0.5 quantile were rounded normally. This rounding procedure ensured 172 
that teams were not penalized for missing the prediction interval by less than one hospital 173 
admission.  174 
 175 
To evaluate forecast performance across all states, D.C., and Puerto Rico, we primarily used 176 
the Weighted Interval Score (WIS). The WIS is a proper score that generates interval scores for 177 
probabilistic forecasts provided in the quantile format [15,18]. Briefly, interval scores are used to 178 
account for dispersion, underprediction, and overprediction. Forecasts with lower absolute WIS 179 
values are considered more accurate than forecasts with higher absolute WIS values. The 180 
relative WIS compares forecast WIS values from those of the baseline model. Simple means 181 
were calculated for absolute and relative WIS to get a score for each model, location, and 182 
season. Mean absolute error (MAE) values are also considered for characterizing differences 183 
between forecasted and reported weekly hospitalizations [15]. Unless otherwise specified, 184 
forecasts of national hospitalizations were not included in summary metrics for accuracy (e.g., 185 
absolute WIS) since these forecasts can have a disproportionate impact on the overall score. To 186 
address concerns related to assessing measures of absolute error on a natural scale when 187 
forecasts span multiple orders of magnitude [19], we performed an analogous analysis on log-188 
transformed hospitalization counts after adding one to all counts to account for zero counts 189 
(Supplemental Analysis 2). We also performed a separate analysis including only national 190 
forecasts (Supplemental Analysis 3). 191 

 192 
In addition, we considered coverage values of the quantile-based prediction intervals to assess 193 
each model’s ability to appropriately capture uncertainty in forecasts. Coverage values are 194 
defined as the percent of observed values that fall within the 50% or 95% prediction intervals for 195 
the corresponding date. Ideally, the percent coverage values will be equal to the corresponding 196 
prediction interval, e.g., 95% percent prediction intervals should contain the reported value 95% 197 
of the time.  198 
 199 
Comparing model forecasts is complicated by the fact that not all models submit forecasts for 200 
each of the forecast targets and for each forecast week in the evaluation period. To partially 201 
account for this, we consider the percent of forecasts submitted as an indicator of how often and 202 
how many different types of forecasts were submitted by each team. Following Cramer et al. 203 
2022 [15], we also consider a standardized rank score that uses the number of models 204 
forecasting a particular location and target and then ranks these forecasts. Ranks were 205 
determined by relative WIS performance, with the best performing model for each observation 206 
being assigned a rank of 1 and the worst performing model receiving a rank equal to the 207 
number of models submitting a forecast for the observation. These ranks were standardized by 208 
rescaling so that 0 corresponds to the worst rank and 1 corresponds to the best rank.  209 
 210 
 211 

Results  212 
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The 2021-22 influenza season was characterized by two distinct waves of activity. The first 213 
occurred between November 2021 and January 2022 and the second between February and 214 
June 2022, though reporting of influenza hospitalizations was not mandatory in the HHS system 215 
until February 2, 2022 (see observed data in Figure 1a). Reported national weekly influenza 216 
hospital admissions exceeded 1000 for 22 out of 25 of the forecast weeks (Figure 1a). Updates 217 
to weekly counts from the forecast evaluation period were generally minimal (Figures S2 – S4), 218 
with 94% of updates during the 2021-22 season resulting in changes of under 10 219 
hospitalizations for subnational jurisdictions. 220 

The 2022-23 influenza season was characterized by an early start, reaching 1000 hospital 221 
admissions nationally before October 2022. A sharp increase nationally through October and 222 
November led to a peak of 26,600 hospital admissions in early December. Hospital admissions 223 
decreased rapidly after December, with 3,000 weekly hospital admissions by the end of 224 
January, and eventually dropped below 1000 confirmed weekly admissions nationally by May 225 
2023. Weekly numbers of admissions exceeded 1000 for 27 out of 34 of the forecast weeks 226 
(Figure 1b, Figure S4). In the 2022-23 season, 83% of updates for weekly admissions resulted 227 
in changes of under 10 hospitalizations for subnational jurisdictions. 228 

Models Included 229 

For both the 2021-22 and 2022-23 influenza seasons, 26 modeling teams submitted forecasts 230 
and 21 and 16 respectively, were eligible for end-of-season evaluation, not including the 231 
FluSight baseline and ensemble models. The number and types of models submitted varied 232 
across weeks with a range of methodological approaches (see Table S1). For the 2021-22 233 
season, a median of 21 models were submitted (range: 15-22), with most having a statistical 234 
component, three mechanistic, and six ensembles of component models.  In 2022-23 there was 235 
a median of 20 models (range: 15 to 26) submitted each week, with many having a statistical 236 
component, three mechanistic, and four ensemble models. Modeling teams varied across 237 
seasons, with 13 modeling groups having submitted eligible forecasts for both seasons. When 238 
only national forecasting targets were considered, no additional teams were included for the 239 
2021-22 season, but two teams, NIH-Flu_ARIMA and ISU_NiemiLab-Flu met inclusion criteria 240 
for 2022-23 (Supplemental Analysis 3). 241 

Relative WIS 242 

Over the evaluation period more models outperformed the FluSight baseline model in 2022-23 243 
(12) than in 2021-22 (6) based on relative WIS (Table 1). Within each season, the models that 244 
achieved an overall relative WIS less than or equal to one represent a variety of modeling 245 
strategies, including a basic quantile autoregression fit, a mechanistic compartmental model 246 
with stochastic simulations, an ensemble of time-series baseline models, a random walk model, 247 
a random forest ensemble, and the FluSight hub ensemble (Table S1). Similar results were 248 
observed when models were evaluated based on their point forecasts alone (see MAE 249 
estimates in Table 1).  250 
 251 
Few teams outperformed the FluSight Ensemble in relative WIS for both seasons. The CMU-252 
TimeSeries model was the only model that outperformed the ensemble for both the 2021-22 253 
and 2022-23 seasons while the MOBS-GLEAM_FLUH, PSI-DICE and MIGHTE-Nsemble 254 
models outperformed the ensemble only in the 2022-23 season. 255 
 256 
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 For both seasons, forecasts from the FluSight Ensemble were ranked among the top 50% of all 257 
model forecasts for the same location, date, and target, more than three-fourths of the time 258 
(79.89% in 2021-22 and 79.02% in 2022-23) (Figure 2). Three models consistently ranked in the 259 
top 25% for 2021-22 and 2022-23 seasons, respectively: CMU-TimeSeries (42.49%, 36.32%), 260 
PSI-DICE (39.24%, 39.84%), and MOBS-GLEAM_FLUH (38.89%, 50.31%). Several models, 261 
ten in 2021-22 and eleven in 2022-23, had bimodal rank distributions, with a combined majority 262 
of their forecasts falling in either the bottom 25% or top 25% (Figure 2). 263 
 264 
Log-Transformed Analysis 265 

For both seasons, the analysis using log-transformed hospitalization counts resulted in the 266 
same top five performing teams in terms of absolute and relative WIS. For the 2021-22 season, 267 
all teams were ranked the same for the log-transformed and non-transformed analyses. In 268 
2022-23, MIGHTE-Nsemble and PSI-DICE performed better than CMU-TimeSeries for the log-269 
transformed analysis (Table 1 and Supplemental Analysis 2). 270 
 271 

Relative WIS and Spatial Variation 272 

Model performance varied by spatial jurisdiction. For individual states, relative WIS values 273 
varied across models ranging from 0.46 to 12.46 in 2021-22 and 0.31 to 12.28 in 2022-23 274 
(Figure 3). More models, including the ensemble, performed better at the state-level than the 275 
baseline in 2022-23 compared to 2021-22. The relative WIS of the FluSight Ensemble had the 276 
smallest range of values across all locations from 0.58 to 1.06 in 2021-22 to 0.63 to 1 in 2022-277 
23 (Figure 3 and Figure S1). To further examine forecast performance across jurisdictions, we 278 
considered the percent of jurisdictions that the relative WIS value for a given model and location 279 
pair was less than the baseline (i.e., lower than 1). The FluSight Ensemble performed as well as 280 
or better than the baseline for all forecast jurisdictions for 2022-23 and 51 out of 52 forecast 281 
jurisdictions for 2021-22, a larger number of jurisdictions than any submitted model (Figure 3). 282 
In 2022-23, 12 models performed better than the baseline at the jurisdiction-level at least 50% 283 
of the time, compared to six models in 2021-22. In general, the models with lower (better) 284 
relative WIS values were consistent between the analysis with all spatial jurisdictions and the 285 
analysis considering only national forecast targets for both seasons (Supplemental Analysis 3). 286 
 287 
 288 
Absolute WIS 289 

Across forecasted weeks, the FluSight Ensemble’s worst performance in terms of absolute WIS 290 
(maximum values) for 1-week ahead targets on March 19, 2022 for 2021-22 and on November 291 
26, 2022 for 2022-23 (Figure 4a). For the 4-week ahead horizon, maximum absolute values, 292 
indicating the worst performance, for each season occurred on June 04, 2022, and December 293 
03, 2022, respectively (Figure 4a). Minimum, or best, absolute WIS values for each season 294 
occurred on July 16, 2022, and May 13, 2023, respectively, both during periods of low flu 295 
activity. 296 
 297 
 298 
Coverage 299 
Model performance for the FluSight Ensemble dropped during periods of relatively rapid change 300 
(see Figures 1 and 3). The lowest 1-week horizon 95% value occurred for forecasts with target 301 
end dates of March 14, 2022, for 2021-22 and on November 21, 2022, for 2022-23 (Figure 4b, 302 
c). Across forecasted weeks in the 2021-22 season, the FluSight Ensemble had a minimum 303 
95% coverage value at the 1-week horizon of 75%. Lower 95% coverage for the 1-week horizon 304 
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was observed in the 2022-23 season with a minimum of 29%. The maximum coverage rate 305 
achieved by the FluSight Ensemble in any individual week was 100% in both seasons. Minimum 306 
FluSight Ensemble 95% coverage values for forecasts at the 4-week horizon in any individual 307 
week were 62% for 2021-22 and 15% for 2022-23.  308 

 309 
Model performance, in terms of coverage, tended to decline at longer time horizons for the 310 
FluSight Ensemble, baseline, and individual contributed models (see Table 2). Over the forecast 311 
weeks, the 2021-22 FluSight ensemble had slightly higher overall 95% coverage values of 312 
89.32%, 86.11%, 85.15%, and 83.33% for the 1- to 4-week ahead horizons respectively, 313 
compared to the 2022-23 season during which the FluSight Ensemble had 95% coverage 314 
values of 85.79%, 81.64%, 78.78%, and 77.85% for the 1- to 4-week ahead horizons 315 
respectively. A similar proportion of models had higher overall 95% coverage values at the 1-316 
week ahead horizon than at the 4-week ahead horizon for 2022-23 (14 of 18 models) and 2021-317 
22 (18 out of 23 models) (Table 2). Out of the forecast targets and across forecast weeks, the 318 
FluSight Ensemble’s 95% prediction interval contained at least 90% of the corresponding 319 
observed values only 55.56% and 64.52% of the time, for 2021-22 and 2022-23 respectively 320 
(Table 2). Ideally 95% prediction intervals are just wide enough to capture 95% of eventually 321 
observed values. 322 
 323 
 324 
Discussion  325 
The 2021-22 influenza season marked the return of from very low levels of seasonal influenza 326 
activity observed in the U.S. following the first years of the COVID-19 pandemic, and many 327 
components of the 2021-22 and 2022-23 FluSight Forecasting Challenges were new. One of 328 
the most substantial changes was the shift from the original FluSight forecasting targets of 329 
weekly influenza-like-illness (ILI) percentages to weekly counts of confirmed influenza 330 
hospitalizations. The COVID-19 pandemic resulted in the availability of a new data source, the 331 
unified HHS-Protect dataset [17], which provided information on laboratory confirmed daily 332 
influenza hospitalizations from all 50 states, D.C., and Puerto Rico. Confirmed influenza hospital 333 
admissions may more directly inform influenza preparedness and response efforts. During the 334 
time period that these forecasting results cover, data were reported daily, with mandatory 335 
reporting for influenza admissions from most hospitals in each state, U.S. territories, and D.C 336 
starting February 2, 2022. Despite challenges accompanying the shift to the new target of 337 
influenza hospitalizations, such as limited historic data from this system for model training, these 338 
forecasts provided substantial utility and reinforced a number of lessons learned over the course 339 
of previous forecasting activities, both during the pre-pandemic influenza seasons and the 340 
COVID-19 pandemic.  341 
 342 
Forecast performance - accuracy 343 

As demonstrated in this analysis, collaborative forecasting hub approaches provide 344 
opportunities to systematically evaluate performance across multiple modeling strategies and 345 
enable the creation of ensemble models. Since a particular model’s performance often varies 346 
within and across seasons [20], it is helpful to have a unified representation of model inputs that 347 
can be used to quickly assess expected upcoming trends. Additionally, this work indicates that 348 
ensemble models may also provide more consistently reliable and well-calibrated forecasts 349 
across spatial jurisdictions.  350 
 351 
Across the evaluation period for both seasons and all forecast jurisdictions, the FluSight 352 
ensemble was among the top 5 performing models in terms of Absolute WIS and Relative WIS. 353 
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Additionally, when considering forecast performance by rank (Figure 2), the FluSight ensemble 354 
more accurately predicted weekly influenza hospital admissions than most contributed models 355 
with the majority of the FluSight ensemble forecasts falling within the top 50% of submitted 356 
forecasts (Table 1, Figure 2). While the PSI-DICE, CMU-TimeSeries, and MOBS-357 
GLEAM_FLUH models have more forecasts in the top 25%, they exhibit higher spatial 358 
heterogeneity than the FluSight ensemble in forecast performance (Figure 3). The generally 359 
high accuracy of the FluSight Ensemble relative to that of individual models is consistent with 360 
previous findings that ensemble models, that utilize the outputs from multiple teams, generally 361 
outperform individual models on average [15,21,22,23]. Like most models, ensembles may have 362 
decreased performance during periods of rapid change when some individual models may have 363 
higher accuracy; however, identifying these time frames and corresponding high-performing 364 
models has been difficult a priori [5,6].  365 
 366 
One option to better evaluate forecast performance during periods of change and across 367 
multiple magnitudes is to evaluate transformed counts [19]. We did not find notable differences 368 
in model performance using this approach in either season. We expected that there might be a 369 
stronger influence on performance in the 2022-2023 season which saw a sharp increase in 370 
hospitalizations in fall 2022, but it is possible that models were not able to capture this initial rise 371 
and thus did not accrue additional benefit in the log transform score. The long tail of the season 372 
may also have elevated scores across all models.  373 
 374 
Forecast model performance tended to decline over longer time horizons. For both the 2021-22 375 
and 2022-23 FluSight seasons, accuracy declined across the 1- to 4-week ahead horizons. This 376 
trend has been observed previously in multiple forecast activities. The U.S. COVID-19 Forecast 377 
Hub observed declines in accuracy for forecasted deaths over periods of 1- to 4- weeks ahead, 378 
and German and Polish COVID-19 forecast efforts also showed declines in performance at the 379 
3- and 4-week ahead horizons [18]. Accuracy scores were also shown to decline over longer 380 
time horizons for influenza-like-illness forecasts [20]. 381 
 382 
Across the forecast weeks, individual models often showed larger increases in absolute WIS, 383 
while the FluSight ensemble had the smallest range of absolute WIS for each season, 384 
demonstrating one aspect of stability for the FluSight ensemble. In terms of state-level 385 
performance, the FluSight ensemble tended to be more robust than individual models, as 386 
measured by relative WIS scores (Figure 3). Similarly, the COVID-19 Forecast Hub ensemble 387 
[15] performed better across all locations, with the COVID-19 Hub ensemble being the only 388 
model to outperform the baseline in each of the forecast locations [15]. 389 
 390 
 391 
 392 
 393 
Forecast performance – coverage  394 

Our analysis found that, as the forecast horizon moved from 1- to 4-weeks, the FluSight 395 
ensemble 95% prediction interval coverage declined from 89.61% to 83.74% in 2021-22 and 396 
from 85.69% to 77.85% in 2022-23. These results highlight room for improvement in model 397 
calibration, as almost all models (with the exception of the UMass trends ensemble) were 398 
overconfident in their predictions (Table 2). The lack of comparable historical data for model 399 
fitting may have contributed to poor calibration of 95% prediction intervals.  400 
 401 
Consistent with past forecasting efforts, forecasting remains difficult in periods of rapid change 402 
and epidemic turning points (e.g., during initial increases or periods of peaking activity). This 403 
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analysis highlights declines in forecast accuracy and coverage during periods of rapid change in 404 
influenza hospitalizations during both the 2021-22 and 2022-23 seasons. For example, the only 405 
model that had 95% coverage greater than 80% from October to January 2023 when 406 
hospitalizations were rapidly increasing and then peaking was LUCompUncertLab-407 
humanjudgment, which did not end up meeting inclusion criteria for the full season analysis.  408 
Analogous declines were also observed for COVID-19 case forecasts [24] and mortality 409 
forecasts across different waves of the COVID-19 pandemic [15], where forecasts 410 
systematically underpredicted during periods of increase and overpredicted during periods of 411 
decrease.  412 
 413 
Times of changing dynamics are the most important periods for public health response and 414 
communication. While forecasting the magnitude at these times may be less tractable, it is 415 
possible that we may be able to provide more reliable information during these difficult 416 
forecasting periods so that forecasts are better able to inform critical planning. In general, most 417 
ensembles tend to predict less activity than observed when trends are steeply increasing and 418 
predict more activity than observed when trends are steeply decreasing, especially when there 419 
is between- or within-model uncertainty in the timing of peaks in cases, hospitalizations, or 420 
deaths. Thus, it may be possible that an ensemble of forecasts for categorical increases or 421 
decreases in activity [25] may have additional utility in terms of preserving valuable information 422 
while also maintaining the benefits of the use of ensembles over individual models. As such, the 423 
FluSight Forecasting Hub added an experimental target in the 2022-23 season for forecasting 424 
categorical rate changes in influenza hospitalizations (e.g., probabilities of increase or 425 
decrease) [13]. Assessing the utility of this additional forecast target will be an important area of 426 
investigation moving forward. Aside from soliciting a separate forecasting target, it may be 427 
possible to determine which forecasting models perform better during different phases of 428 
epidemics and then use this information to weight models accordingly when their forecasts are 429 
aggregated into an ensemble [26]. 430 
 431 

Influenza forecasting in the COVID-19 era: challenges and opportunities 432 

Several challenges for forecasting existed during the 2021-22 and 2022-23 influenza seasons. 433 
First, as noted earlier, the change in the forecasting target from outpatient ILI percentages to 434 
counts of influenza-associated hospitalizations from a data collection system established during 435 
the COVID-19 pandemic meant that there was little data for forecast calibration and training. 436 
This shift also required changes in data processing for teams that had produced ILI forecasts 437 
previously. While previous data on influenza-associated hospitalizations was available through 438 
the FluSurv-NET system, differences in reporting and the spatial resolution, of the FluSurv-NET 439 
system may have complicated the process of utilizing this dataset for the purpose of forecasting 440 
model calibration. In addition, reporting within the unified HHS-Protect hospitalization dataset 441 
changed throughout this forecasting endeavor. For example, the confirmed influenza hospital 442 
admissions field only became mandatory for the 2021–22 season on February 2, 2022, leading 443 
to an increase in the number of reported hospitalizations and a change in hospital reporting 444 
practices during a period of increasing influenza activity.  445 
 446 
In addition to changing reporting patterns, the COVID-19 pandemic brought other challenges for 447 
forecasting influenza, including changing human behavior. The quantity and types of 448 
interactions between people likely changed in tandem with perceptions of risk of illness with 449 
COVID-19. In addition, the use of nonpharmaceutical interventions (NPIs) aimed at preventing 450 
SARS-CoV-2 transmission (e.g., stay-at-home orders, mask wearing) reduced transmission of 451 
other respiratory pathogens [9], including influenza. These changes in behavior may be related 452 
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to the minimal influenza activity observed in the U.S. in the 2020–21 season and the low 453 
severity but atypically late influenza season observed in the 2021–22 season. Population-level 454 
behavior is difficult to predict, especially in the context of changing public health 455 
recommendations and emerging SARS-CoV-2 variants, which complicated the process of 456 
forecasting. Despite these challenges, FluSight forecasting teams provided forecasts of 457 
confirmed influenza hospitalizations throughout each season, which helped public health 458 
officials anticipate trends during the unusually prolonged influenza season in 2021-22, with 459 
forecasting efforts extending into June, and then again for the atypically early 2022-23 season.  460 
 461 
 462 
While the shift to forecasting for a new target presented a modeling challenge, the utility of the 463 
corresponding new data source should be recognized. The HHS-Protect dataset [7] provided, in 464 
addition to the state-level timeseries, facility-level data, which is at a higher spatial resolution 465 
than other indicators of influenza activity. During the forecasting time frame analyzed here, the 466 
data were also reported daily with previous day admission data published as soon as the day 467 
after their occurrence, providing a timely source of information. As our data update analysis 468 
(Figures S2 – S4) shows, these data demonstrated remarkably stable reporting behavior, 469 
particularly during the 2021-22 season, with 94% of updates resulting in changes of under 10 470 
hospitalizations for subnational jurisdictions. Stability of reporting decreased slightly during the 471 
2022-23 season, with 83% of updates resulting in changes of under 10 hospitalizations for 472 
subnational jurisdictions. Degraded forecast performance has been associated with large 473 
revisions to initially observed values [6], and consistency in reporting is an important component 474 
of a reliable forecasting target. Additionally, this dataset provided national and jurisdictional-level 475 
data for confirmed influenza hospital admissions. In contrast with ILI, this indicator eliminated 476 
the need to model outpatient visits associated with co-circulating non-influenza pathogens that 477 
can cause ILI. Continued availability of rapid, disease-specific indicators of hospitalization, such 478 
as those provided by these data, will facilitate improved forecasting utility and possibly 479 
improvements in accuracy [27], particularly when forecasts are informed by mechanistic 480 
transmission models.  481 
 482 
 483 
The FluSight forecasting collaboration adapted quickly in 2021 to utilize a novel laboratory 484 
confirmed influenza hospital admission dataset. Even with limited calibration data and atypical 485 
influenza seasonality in the 2021-22 and 2022-23 seasons, the FluSight ensemble forecast 486 
provided more robust forecasts than individual component models across spatial jurisdictions 487 
and time horizons. This result mirrors those of other forecasting hubs. Collaborative hubs also 488 
offer the ability for frequent feedback and interaction between modeling teams, providing 489 
opportunities for rapidly sharing observations about underlying data and insights for forecast 490 
development [28]. We observed poor coverage and general performance especially at the 491 
beginning of the 2022-23 season and during other periods of rapid change. Collective insights 492 
from these challenges can also inform when forecasts should be interpreted with extra caution. 493 
Ongoing availability of the confirmed influenza hospitalization dataset, which covers all states, 494 
could improve model calibration and ultimately contribute to the improvement of influenza 495 
forecast performance and utility, as well as continued exploration and improvement of 496 
forecasting and ensembling methodologies. These improvements are needed, particularly to 497 
more accurately capture trends and appropriate levels of uncertainty during times of rapid 498 
change. 499 

 500 
 501 

 502 
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Tables and Figures 504 

Table 1: Performance metrics for teams submitting at least 75% of weekly FluSight targets.  505 

Model 
Absolute 

WIS 
Relative 

WIS MAE 

50% 
Coverage 

(%) 

95% 
Coverage 

(%) 

% of 
Forecasts 
Submitted 

Log 
Absolute 

WIS 

Log 
Relative 

WIS 

2021-22 

CMU-TimeSeries 12.54 0.74 18.92 47 90 100 0.31 0.78 

Flusight-ensemble 13.86 0.82 20.79 48 86 100 0.33 0.83 

PSI-DICE 14.03 0.83 20.17 43 82 100 0.33 0.84 

UMass-
trends_ensemble 

14.35 0.84 22.24 71 97 100 0.36 0.91 

Sgroup-
RandomForest 

15.45 0.91 23.87 47 95 100 0.38 0.97 

CEID-Walk 15.63 0.94 22.19 52 82 89 0.39 0.99 

Flusight-baseline 16.99 1.00 24.10 49 83 100 0.40 1.00 

GT-FluFNP 17.57 1.02 23.40 39 69 96 0.38 0.98 

MOBS-
GLEAM_FLUH 

17.17 1.03 22.25 32 63 91 0.42 1.08 

SigSci-TSENS 17.79 1.03 24.86 38 72 96 0.40 1.01 

IEM_Health-
FluProject 

17.69 1.04 23.98 50 85 100 0.40 1.02 

CU-ensemble 18.32 1.08 25.41 44 77 100 0.39 0.98 

LucompUncertLab-
TEVA 

21.02 1.22 29.99 54 86 89 0.41 1.05 

UVAFluX-Ensemble 21.65 1.28 25.76 38 64 99 0.45 1.14 

LucompUncertLab-
VAR2_plusCOVID 

22.03 1.30 28.99 42 74 94 0.42 1.08 

UT_FluCast-Voltaire 23.64 1.39 35.19 50 91 99 0.45 1.14 

LucompUncertLab-
VAR2K_plusCOVID 

24.44 1.42 32.43 42 74 89 0.47 1.20 

LucompUncertLab-
VAR2 

25.93 1.53 35.05 39 72 94 0.53 1.35 

LucompUncertLab-
VAR2K 

26.81 1.55 39.35 42 83 89 0.61 1.56 

LosAlamos_NAU-
Cmodel_Flu 

28.69 1.69 36.14 26 59 100 0.63 1.60 

Sgroup-SikJalpha 28.94 1.70 38.59 18 46 100 0.49 1.24 

GH-Flusight 30.93 1.82 31.89 6 13 94 0.74 1.88 

SigSci-CREG 27.36 1.93 31.00 19 44 89 0.80 2.03 

2022-23 

MOBS-
GLEAM_FLUH 

42.20 0.61 57.97 42 78 94 0.37 0.65 

CMU-TimeSeries 44.48 0.67 65.94 49 87 94 0.41 0.70 

PSI-DICE 47.45 0.70 63.17 48 80 100 0.42 0.71 

MIGHTE-Nsemble 48.99 0.72 67.50 53 82 96 0.41 0.70 

Flusight-ensemble 51.72 0.76 71.04 56 81 100 0.44 0.74 

Umass-
trends_ensemble 

53.86 0.80 79.40 63 89 100 0.49 0.83 
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Model 
Absolute 

WIS 
Relative 

WIS MAE 

50% 
Coverage 

(%) 

95% 
Coverage 

(%) 

% of 
Forecasts 
Submitted 

Log 
Absolute 

WIS 

Log 
Relative 

WIS 

GT-FluFNP 59.75 0.81 72.88 56 75 89 0.53 0.89 

CEPH-Rtrend_fluH 54.20 0.83 70.47 44 78 90 0.58 1.05 

Sgroup-
RandomForest 

54.29 0.83 75.98 53 84 97 0.52 0.88 

CU-ensemble 62.23 0.85 75.57 51 70 84 0.51 0.85 

UGA_flucast-
Okeeffe 

62.13 0.94 77.33 50 72 95 0.61 1.02 

SigSci-TSENS 64.27 0.96 80.02 58 74 93 0.66 1.09 

Flusight-baseline 67.69 1.00 80.05 49 74 100 0.59 1.00 

VTSanghani-
ExogModel 

72.30 1.00 92.56 30 61 81 0.63 1.05 

UNC_IDD-InfluPaint 61.14 1.01 77.90 40 75 79 0.52 0.94 

UVAFluX-Ensemble 78.71 1.11 94.45 22 41 95 0.61 1.03 

SigSci-CREG 79.68 1.36 89.29 38 62 91 0.68 1.16 

JHU_IDD-CovidSP 129.16 1.91 174.98 48 80 81 0.49 0.82 

 506 

The Absolute WIS column refers to the Weighted Interval Score for each model across all fifty states, D.C., and 507 
Puerto Rico forecast targets. The Relative WIS compares the WIS value of each model to the Flusight-baseline 508 
model. All models with a relative WIS score less than one outperformed the baseline model when evaluated solely 509 
upon WIS. 95% and 50% coverage values are provided for the percent of times that reported weekly incidence 510 
values were within the 95% or 50% prediction intervals respectively, across all the forecast targets submitted by each 511 
team. The percent of forecasts submitted is determined by the number of forecast targets submitted by each team out 512 
of all possible forecast targets occurring within the duration of the evaluation period. 513 

 514 

 515 

  516 
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Table 2: One-to-four-week coverage and one-to-four-week percent of coverage above 90% for 517 
teams meeting inclusion criteria.  518 

Model 
Relative 

WIS 

% WIS 
Below 

Baseline 

Coverage % Coverage above 90 

1 Wk 2 Wk  3 Wk  4 Wk  1 Wk 2 Wk 3 Wk 4 Wk 

2021-22 

CMU-TimeSeries 0.74 75.00 90.17 91.45 90.60 86.54 50.00 72.22 61.11 27.78 

Flusight-ensemble 0.82 92.31 89.32 86.11 85.15 83.33 55.56 33.33 27.78 38.89 

PSI-DICE 0.83 76.92 88.89 83.87 78.31 76.50 38.89 27.78 5.56 0.00 

Umass-
trends_ensemble 

0.84 48.08 96.15 97.65 96.90 96.15 100.00 100.00 100.00 100.00 

Sgroup-
RandomForest 

0.91 44.23 95.41 94.87 94.66 94.12 88.89 88.89 83.33 88.89 

CEID-Walk 0.94 80.77 82.09 83.77 81.01 81.85 37.50 37.50 31.25 37.50 

Flusight-baseline 1.00 0.00 82.26 84.19 82.48 81.62 27.78 22.22 22.22 22.22 

GT-FluFNP 1.02 54.00 70.11 68.67 68.22 70.11 5.56 16.67 16.67 22.22 

MOBS-
GLEAM_FLUH 

1.03 60.00 71.11 65.80 59.79 56.49 0.00 0.00 0.00 0.00 

SigSci-TSENS 1.03 46.00 74.11 73.44 70.54 69.20 11.11 5.56 5.56 5.56 

IEM_Health-
FluProject 

1.04 48.08 91.45 86.54 82.59 78.21 72.22 38.89 22.22 22.22 

CU-ensemble 1.08 32.69 79.59 80.66 76.50 71.90 16.67 11.11 0.00 0.00 

LucompUncertLab-
TEVA 

1.22 32.69 84.86 85.58 86.06 86.18 25.00 18.75 25.00 31.25 

UVAFluX-Ensemble 1.28 25.00 66.05 65.51 62.58 60.95 11.11 0.00 0.00 0.00 

LucompUncertLab-
VAR2_plusCOVID 

1.30 36.54 76.70 74.77 73.30 70.14 17.65 5.88 5.88 5.88 

UT_FluCast-
Voltaire 

1.39 5.77 94.73 90.96 89.13 90.42 83.33 72.22 55.56 61.11 

LucompUncertLab-
VAR2K_plusCOVID 

1.42 25.00 75.72 75.24 74.04 72.72 6.25 0.00 0.00 0.00 

LucompUncertLab-
VAR2 

1.53 9.62 73.87 72.29 72.17 70.81 11.76 5.88 11.76 11.76 

LucompUncertLab-
VAR2K 

1.55 9.62 81.97 81.49 83.05 85.46 6.25 18.75 25.00 37.50 

LosAlamos_NAU-
Cmodel_Flu 

1.69 13.46 65.28 59.29 56.52 54.06 5.56 0.00 0.00 0.00 

Sgroup-SikJalpha 1.70 1.92 40.28 45.73 48.08 48.29 0.00 0.00 0.00 0.00 

GH-Flusight 1.82 5.77 18.33 12.90 11.99 10.63 0.00 0.00 0.00 0.00 

SigSci-CREG 1.93 12.00 46.87 43.98 43.86 43.13 0.00 0.00 0.00 0.00 

2022-23 

MOBS-
GLEAM_FLUH 

0.61 94.12 81.34 77.50 76.84 77.67 41.94 29.03 29.03 23.33 

CMU-TimeSeries 0.67 86.54 86.27 87.12 87.25 86.31 58.06 64.52 70.97 70.00 

PSI-DICE 0.70 92.31 88.03 81.27 77.17 74.87 64.52 67.74 64.52 60.00 

MIGHTE-Nsemble 0.72 90.38 86.16 84.22 81.71 76.00 63.33 60.00 66.67 58.62 

Flusight-ensemble 0.76 100.00 85.79 81.64 78.78 77.12 64.52 67.74 64.52 60.00 



16 
 

Model 
Relative 

WIS 

% WIS 
Below 

Baseline 

Coverage % Coverage above 90 

1 Wk 2 Wk  3 Wk  4 Wk  1 Wk 2 Wk 3 Wk 4 Wk 

Umass-
trends_ensemble 

0.80 92.31 90.88 89.89 87.41 85.83 77.42 74.19 70.97 70.00 

GT-FluFNP 0.81 96.00 75.98 72.70 75.00 77.30 55.17 55.17 55.17 65.52 

CEPH-Rtrend_fluH 0.83 67.31 75.82 80.22 79.33 77.21 46.43 50.00 57.14 44.44 

Sgroup-
RandomForest 

0.83 92.31 90.06 84.49 81.86 79.71 73.33 70.00 70.00 65.52 

CU-ensemble 0.85 75.00 71.60 71.38 69.90 66.85 46.15 53.85 53.85 52.00 

UGA_flucast-
Okeeffe 

0.94 58.82 80.20 73.07 69.02 65.86 50.00 46.67 40.00 37.93 

SigSci-TSENS 0.96 42.00 76.31 74.12 72.93 70.35 54.84 54.84 54.84 56.67 

Flusight-baseline 1.00 0.00 78.72 74.26 71.34 68.85 58.06 58.06 58.06 56.67 

VTSanghani-
ExogModel 

1.00 51.92 65.62 61.54 58.00 57.29 0.00 0.00 0.00 4.17 

UNC_IDD-
InfluPaint 

1.01 64.71 75.20 74.25 75.12 75.14 52.00 44.00 64.00 54.17 

UVAFluX-Ensemble 1.11 11.76 42.81 43.53 39.35 39.42 0.00 0.00 0.00 0.00 

SigSci-CREG 1.36 6.00 68.28 62.27 58.85 55.34 48.39 48.39 45.16 43.33 

JHU_IDD-CovidSP 1.91 33.33 86.74 81.67 78.18 73.60 65.38 61.54 53.85 48.00 

Table 2: % WIS Below Baseline shows the percent of WIS values for each model below the corresponding 
Flusight-baseline WIS. The ‘% Coverage above 90’ columns show the percent of weekly 95% coverage values that 
are greater than or equal to 90% for each model by horizon. Modeling teams are ordered within each season by 
their relative WIS performance. 

 519 

 520 

  521 
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Figure 1: National weekly observed hospitalizations (black points) along with FluSight ensemble 522 
forecasts for four weeks of submissions in the 2021-22 season (panel a) and seven weeks of 523 
submissions in the 2022-23 season (panel b). The median FluSight ensemble forecast values 524 
(blue points) are shown with the corresponding 50%, 80%, and 95% prediction intervals (blue 525 
shaded regions).  526 

 527 

a 
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Figure 2: Standardized rank of weighted interval score (WIS) over all forecast jurisdictions and 538 
horizons (1- to 4-week ahead), for the FluSight ensemble and each team submitting at least 539 
75% of the forecast targets (see Table 1 for qualifying teams and season metrics).  540 

 541 

 542 

 543 

  544 
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Figure 3: State-level WIS values for each team relative to the FluSight baseline model. The 545 
range of Relative WIS values below 1, in blue, indicate better performance than the FluSight 546 
baseline (white). Relative WIS values above 1, in red, indicate poor performance relative to the 547 
FluSight baseline. Teams are ordered on horizontal axis from lowest to highest Relative WIS 548 
values for each season. Analogous jurisdiction-specific relative WIS scores on log transformed 549 
counts are displayed in Figure S7. 550 

 551 

 552 

 553 

 554 

  555 
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Figure 4: Time series of log transformed absolute WIS (panel a) and 1- and 4-week ahead 95% 556 
coverage (panel b) for state and territory targets. Note that the forecast evaluation period 557 
translates to 1-week ahead forecast target end dates from February 26 to June 25, 2022, and 558 
October 22, 2022, to May 20, 2023, and 4-week ahead forecast target end dates from March 19 559 
to July 16, 2022, and November 5, 2022, to June 10, 2023. Weekly results for the FluSight 560 
baseline and ensemble models are shown in red and blue respectively. Results for individual 561 
contributing models are shown in light gray.  562 

 563 

 564 

565 
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The forecasts from models used in this paper are available from the FluSight Forecast Hub 643 
GitHub repository (https://github.com/cdcepi/Flusight-forecast-data) [13] and the Zoltar forecast 644 
archive (https://zoltardata.com/project/299) [29]. These are both publicly accessible. The code 645 
used to generate all figures and tables in the manuscript will be available in a public 646 
repository (https://github.com/cdcepi/FluSight-manuscripts) at the time of publication. All 647 
analyses were conducted using the R language for statistical computing (version 4.0.3) [30]. 648 
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