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Abstract  65 

During the COVID-19 pandemic, forecasting COVID-19 trends to support planning and response was a priority for 66 

scientists and decision makers alike. In the United States, COVID-19 forecasting was coordinated by a large 67 

group of universities, companies, and government entities led by the Centers for Disease Control and Prevention 68 

and the US COVID-19 Forecast Hub (https://covid19forecasthub.org). We evaluated approximately 9.7 million 69 

forecasts of weekly state-level COVID-19 cases for predictions 1-4 weeks into the future submitted by 24 teams 70 

from August 2020 to December 2021. We assessed coverage of central prediction intervals and weighted 71 

interval scores (WIS), adjusting for missing forecasts relative to a baseline forecast, and used a Gaussian 72 

generalized estimating equation (GEE) model to evaluate differences in skill across epidemic phases that were 73 

defined by the effective reproduction number. Overall, we found high variation in skill across individual models, 74 

with ensemble-based forecasts outperforming other approaches. Forecast skill relative to the baseline was 75 

generally higher for larger jurisdictions (e.g., states compared to counties). Over time, forecasts generally 76 

performed worst in periods of rapid changes in reported cases (either in increasing or decreasing epidemic 77 
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phases) with 95% prediction interval coverage dropping below 50% during the growth phases of the winter 78 

2020, Delta, and Omicron waves. Ideally, case forecasts could serve as a leading indicator of changes in 79 

transmission dynamics. However, while most COVID-19 case forecasts outperformed a naïve baseline model, 80 

even the most accurate case forecasts were unreliable in key phases. Further research could improve forecasts 81 

of leading indicators, like COVID-19 cases, by leveraging additional real-time data, addressing performance 82 

across phases, improving the characterization of forecast confidence, and ensuring that forecasts were coherent 83 

across spatial scales. In the meantime, it is critical for forecast users to appreciate current limitations and use a 84 

broad set of indicators to inform pandemic-related decision making.  85 

 86 

Author Summary  87 

As SARS-CoV-2 began to spread throughout the world in early 2020, modelers played a critical role in predicting 88 

how the epidemic could take shape. Short-term forecasts of epidemic outcomes (for example, infections, cases, 89 

hospitalizations, or deaths) provided useful information to support pandemic planning, resource allocation, and 90 

intervention . Yet, infectious disease forecasting is still a nascent science, and the reliability of different types of 91 

forecasts is unclear. We retrospectively evaluated COVID-19 case forecasts, which were often unreliable. For 92 

example, forecasts did not anticipate the speed of increase in cases in early winter 2020. This analysis provides 93 

insights on specific problems that could be addressed in future research to improve forecasts and their use. 94 

Identifying the strengths and weaknesses of forecasts is critical to improving forecasting for current and future 95 

public health responses.  96 

 97 

Introduction 98 

Predicting the trajectory of an epidemic to support control and mitigation planning is the primary objective of 99 

infectious disease forecasting. To this end, large-scale, collaborative forecasting efforts across multiple disease 100 
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systems, such as influenza (1–3), dengue (4), West Nile (5), and Ebola viruses (6), have been integrated into 101 

routine public health workflows and emergency response (7). Researchers in academia, private institutions, and 102 

the United States (US) government built upon these frameworks to incorporate forecasts into the COVID-19 103 

information systems used to inform pandemic response and created the US COVID-19 Forecast Hub. In April 104 

2020, the US Centers for Disease Control and Prevention (CDC) and the COVID-19 Forecast Hub began collecting 105 

COVID-19 death forecasts (8). Compared to death reports, case reports are a leading indicator of SARS-CoV-2 106 

infections, as the time from infection to case report is typically shorter than that between infection and death 107 

report. Hence, information gleaned from case forecasts is potentially more actionable. 108 

 109 

Case forecasts for all US counties (n=3,143), states (n=50), territories (n=5), the District of Columbia (DC), and 110 

the nation as a whole were generated and collected beginning in July 2020, with ensemble forecasts of cases 111 

first posted on a CDC webpage on August 6, 2020 (8,9). Because of their potential utility, case forecasts were 112 

also integrated into US government web pages and situational awareness updates (10). In addition, county-level 113 

case forecasts were used to inform vaccine trial site selection (11) and COVID-19 case forecasts have been cited 114 

as useful for guiding personal risk-based decisions (12). Because these forecasts influence policies and personal 115 

decisions, accuracy and precision of the forecasts is of the utmost importance. Incorrect forecasts can lead to 116 

inappropriate policy implementation and resource allocation, and also to erosion of trust in public health 117 

institutions (13). 118 

 119 

As part of routine use of the case forecasts in the COVID-19 response, real-time evaluation was conducted. One 120 

of the performance metrics included in the evaluation was the 95% prediction interval (PI) coverage, an estimate 121 

of the frequency at which the interval captures the eventually observed data. The 95% PI of a reliable forecast 122 

should capture eventually reported cases 95% of the time. However, the real-time evaluation indicated that case 123 

forecasts were not always reliable, with much lower 95% PI coverage than expected (14). For example, in 124 

November 2020 as the 2020-2021 winter wave began, the 95% PI coverage for all states and territories was less 125 
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than 50% for even the shortest, 1-week ahead forecasts from the ensemble – generally the most reliable 126 

forecast. Repeated periods of low coverage during subsequent surges led CDC to stop posting COVID-19[case 127 

forecasts in December 2021. Though these forecasts showed poor performance, there are opportunities to 128 

develop more precise and reliable future predictions. 129 

 130 

Evaluation of forecast performance provides an opportunity not only to assess prediction skill for the purposes 131 

of improving forecasts, but also to assess the reliability of the forecasts and foster transparency between 132 

forecast users and creators. While evaluation is recommended in forecasting research guidelines (i.e., EPIFORGE 133 

2020 (15), a systematic review of COVID-19 models showed that half of published models did not include 134 

probabilistic predictions and that approximately one-fourth of published models did not include performance 135 

evaluations (16). We have previously evaluated forecast performance of cumulative (17) and incident (18) 136 

COVID-19 deaths submitted to the COVID-19 Forecast Hub. Given that an ensemble of submitted models 137 

provided consistently accurate probabilistic forecasts at different scales in both evaluations, here we apply 138 

similar methods to assess the prediction skill of the COVID-19 case forecasters, with particular interest in the 139 

COVIDhub ensemble model (that is, a model that combine predictions from forecasts submitted to the Forecast 140 

Hub). Specifically, we analyze prediction interval coverage and other aspects of nearly 10 million individual 141 

forecasts collected by the COVID-19 Forecast Hub for US jurisdictions between July 2020 and December 2021, 142 

the full period over which COVID-19 case forecasts were published by the CDC. We analyze relative forecast 143 

performance across spatial scales and phases of the pandemic to identify limitations and opportunities for 144 

future improvement of case forecasts.  145 

 146 
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Results  147 

Summary of Included Team Forecasts  148 

A total of 14,960,171 forecasts were submitted by 67 teams throughout the analysis period (see Supporting 149 

Information [S] 1 for submission patterns over time). Because forecasts were submitted at multiple geographic 150 

scales, we stratified analyses for 1) national forecasts, 2) state (including all 50 states), territory (US Virgin 151 

Islands and Puerto Rico), and DC forecasts), 3) county level forecasts (include all 3,143 counties and county 152 

equivalents), split into five equal sized groups based on county population size.  153 

 154 

We first evaluated forecasts for inclusion criteria based on numbers of locations, horizons, and time periods 155 

forecast with the same model. Briefly, teams were included if they submitted the full range of required 156 

quantiles, included at least 50 of states/territories/DC or 75% of counties, and produced forecasts at least four 157 

weeks into the future for at least 50% of the time points in the study period. At the national level, 22 sets of 158 

team forecasts met these criteria (5,136 forecasts across dates and forecast horizons), 23 sets of team forecasts 159 

met the state/territory level criteria (280,132 forecasts across jurisdictions, dates, and forecast horizons), and 15 160 

sets of team forecasts met the county-level criteria (9,415,460 forecasts across counties, dates, and forecast 161 

horizons). Overall, 64.8% of all submitted forecasts were included in the analysis (9,700,728 forecasts). Of the 162 

included forecasts, 11 sets of team forecasts met the inclusion criteria for analyzing submissions across all 163 

geospatial scales (8,125,220 forecasts for specific locations, date and forecast horizon). 164 

 165 

Each team included in the analysis submitted forecasts that were generated from unique model structures, data 166 

inputs, and assumptions (S1). Two naïve models (the COVIDhub-baseline and CEID-Walk) and four ensemble 167 

models (the COVIDhub-4_week_ensemble, the COVIDhub-trained_ensemble, LNQ-ens1, and UVA-Ensemble), 168 

which combined multiple forecasts into one, were included in the 26 models evaluated (see S1 Table 1.1). The 169 

COVIDhub-baseline model projects the number of reported cases in the most recent week as the median 170 

predicted value for the next 4 weeks. CEID-Walk is a random walk model with a simple method for removing 171 
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outliers. A total of seven models included data on COVID-19 hospitalizations, 12 models incorporated 172 

demographic data, and seven models used mobility data. Of the 26 evaluated models, three assumed that social 173 

distancing and other behavioral patterns changed during the prediction period. 174 

 175 

The evaluation period consisted of 1-4 week ahead forecasts submitted in the 73 weeks from July 28, 2020 176 

through December 21, 2021. Multiple phases of the US epidemic were included: the late summer 2020 increase 177 

in several locations, a large late-fall/early-winter surge in 2020/2021, the rise and fall of the Delta variant in the 178 

summer and fall of 2021, and the early phase of the Omicron variant’s dominance in winter 2021 (Figure 1A). 179 

Performance of the national ensemble forecasts varied over this period (Figure 1B). For some forecasts, the 180 

median predictions were close to the cases eventually reported, and most reported numbers fell within the 95% 181 

PIs. However, forecasts made at other times, such as January 2021 or December 2021, diverged widely from the 182 

reported data. At those times, the forecasts missed substantial decreases and increases, respectively, with 183 

reported cases falling within the 95% prediction interval for only 1-week ahead forecasts.  184 

 185 

Figure 1. Weekly incident reported COVID-19 cases per 100K population, nationally (in black) and per 186 

state/territory/DC (in gray), over time in panel A. Panel B shows a subset of COVIDhub-4_week_ensemble 187 

forecasts (in green) over time, with the median predictions represented as lines and points and the 95% 188 

prediction intervals in bands. Reported incident cases (counts per week) are shown in gray. In both plots, the 189 

black, dashed vertical line shows the date that public communication of the case forecasts was paused. 190 

 191 

Aggregate performance 192 

We evaluated aggregate forecast performance with two metrics: Weighted Interval Score (WIS), a proper score 193 

considering both precision and accuracy, and prediction interval coverage, an indicator of forecast uncertainty. 194 

Lower WIS values reflect forecasts with probability mass closer to observed values. We assessed scaled pairwise 195 
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WIS relative to the baseline model (referred to throughout as relative WIS, or rWIS) for national and 196 

state/territory/DC forecasts (Figure 2). A rWIS less than one indicates performance that is better than the 197 

baseline model. 198 

 199 

Figure 2: Percent of weeks with complete submissions for all sets of team forecasts, scaled, pairwise relative 200 

Weighted Interval Score (rWIS; see Methods for description), observed 95% prediction interval coverage, by 201 

geographical scale of submitted forecasts. Teams are sorted by increasing state/territory/DC rWIS values. 202 

 203 

Overall, seven of 22 team’s forecast models outperformed the COVIDhub-baseline model at the 204 

state/territory/DC level (i.e., had rWIS values less than 1.0), and 11 outperformed the baseline model at the 205 

national level. Six of these teams outperformed the baseline model at both scales: LNQ-ens1, COVIDhub-206 

4_week_ensemble, USC-SI_kJalpha, LANL-GrowthRate, Microsoft-DeepSTIA, and CU-select.  207 

 208 

PI coverage at the 95% level should be close to 95% for well calibrated forecasts. However, it was lower for most 209 

sets of team forecasts, with only one (LNQ-ens1) having coverage of at least 90% at all scales, while others were 210 

as low as 23%. PI coverage at 50% and 80% levels were also well below nominal levels for most sets of team 211 

forecasts, including the COVIDhub-4_week_ensemble (Figure 3). For the 50% prediction interval, no sets of team 212 

forecasts had coverage better than 36% at any scale. Only two sets of team forecasts had better coverage than 213 

the COVIDhub-4_week_ensemble for the geographic scales in which they submitted forecasts: LNQ-ens1 (all 214 

scales) and JHU_UNC_GAS-StatMechPool (state/territory/DC and large county levels). 215 

 216 

Figure 3: Expected and observed coverage rates for central 50%, 80% and 95% prediction intervals aggregated 217 

over time and horizon for national forecasts (panel A), state/territory/DC forecasts (panel B), the largest 218 

county forecasts (panel C). The dashed line represents optimal expected coverage. Team forecasts that had 219 
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closer to nominal coverage than the COVIDhub-4_week_ensemble model at all three coverage levels are 220 

labeled on the right side of the plots. 221 

 222 

Forecast skill also showed distinct patterns across jurisdictional scales, with rWIS decreasing for larger 223 

jurisdiction scales (e.g., national vs. state/territory) or population sizes (e.g., larger counties vs. smaller counties, 224 

Figure 4) for most sets of team forecasts. In contrast to this general trend, for three sets of team forecasts, that 225 

pattern was inverted, one team had no distinct pattern, and the COVIDhub-4_week_ensemble had markedly 226 

consistent rWIS across all scales. Consistent with the aggregate findings, both LNQ-ens1 and COVIDhub-227 

4_week_ensemble had rWIS lower than 1.0 at all scales, while LANL-GrowthRate had rWIS greater than 1.0 for 228 

smaller counties.  229 

 230 

Figure 4: Scaled, pairwise relative Weighted Interval Score (rWIS) (see Methods for description) by spatial 231 

scale for sets of team forecasts that submitted forecasts for the US nation, states/territories/DC, and all US 232 

counties. WIS is averaged across all horizons. The COVIDhub-baseline model has, by definition, a rWIS of 1 233 

(horizontal dashed line). Teams are ordered by increasing state/territory/DC rWIS with the most accurate 234 

model on the left. Points for each team are staggered horizontally to show overlapping WIS values. 235 

 236 

Performance across jurisdictions 237 

There was additional variability in forecast skill between jurisdictions. Only two team forecasts (LNQ-ens1 and 238 

COVIDhub-4_week_ensemble) performed as well as or better than the baseline for all included states and 239 

territories (Figure 5). Variation was higher between team forecasts than between specific jurisdictions, but the 240 

baseline model tended to outperform more models in some jurisdictions (e.g., the baseline was better in 241 

Colorado, Kansas, Puerto Rico) than in others (e.g., the baseline was worse in Mississippi, South Carolina, West 242 

Virginia). 243 
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 244 

Figure 5: Scaled, pairwise relative Weighted Interval Score (rWIS; see Methods for description) by location for 245 

national and state/territory/DC forecasts, averaged across all horizons through the entire analysis period. 246 

National estimates are displayed first, followed by jurisdictions in alphabetical order. Team forecasts are 247 

ordered by increasing average state/territory/DC rWIS.   248 

 249 

Performance over time 250 

While rWIS varied between team forecasts and jurisdictions, it varied even more over time (Figure 6). For 251 

example, all models had relatively high WIS in December 2020-January 2021 and low WIS in June 2021. 252 

Prediction interval coverage also varied between teams and over time, with most team forecasts exhibiting 253 

times of low coverage. Across most time points, the baseline model outperformed many team forecasts, 254 

including the COVIDhub-4_week_ensemble, though the ensemble more often outperformed the baseline in 255 

both metrics at the national, state/territory, and large county scales. Increased WIS and decreased prediction 256 

interval coverage generally occurred with increasing case counts, such as in the fall of 2020 and summer of 257 

2021. The worst performance was in the early Omicron wave in the winter of 2021. For the last set of ensemble 258 

forecasts posted by CDC in December 2021 (https://www.cdc.gov/coronavirus/2019-259 

ncov/science/forecasting/forecasts-cases.html), the WIS reached the highest level ever for all scales and the 260 

reported case numbers were outside the 95% prediction interval for most locations at every forecast horizon. 261 

 262 

Figure 6: Forecast accuracy over time, aggregated by geographic units, forecast horizon, and prediction date. 263 

Panels A-C show average Weighted Interval Score (WIS); panels D-F show 95% prediction interval coverage. 264 

The black, dashed vertical line in all panels shows the date that public communication of the case forecasts 265 

was paused. The black, dashed horizontal line in panels D-F shows nominal 95% interval coverage. National 266 
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level forecasts are presented in A and D, state/territory/DC forecasts in B and E and large county level 267 

forecasts in C and F.  268 

 269 

To further investigate these temporal patterns in performance, we first classified each forecast week as 270 

increasing, peak, decreasing, or nadir based on the estimated time-varying reproduction number for that given 271 

week and jurisdiction. We then fitted Gaussian generalized estimating equations (GEE) models for each set of 272 

team forecasts, using a normalized, log transformed WIS value per forecast time and location as the model 273 

outcome. The regression models were adjusted for each prediction horizon and included a natural spline with 274 

two degrees of freedom for the time/state reported case counts to adjust for intrinsic increases in WIS due to 275 

higher values in reported cases (see S6). In agreement with the aggregated results (Figure 2), we found that the 276 

expected WIS at the mean number of case counts across all jurisdictions was lower than the baseline for the 277 

better performing models (6 team forecasts and the ensemble) and higher than the baseline for others (8 team 278 

forecasts).  279 

 280 

Forecasts skill also varied across epidemic phases (Figure 7B). Compared to the baseline model across all phases, 281 

overall skill for most models was better in nadir and peak phases and worse in increasing and decreasing phases. 282 

LNQ-ens1 and the COVIDhub ensemble outperformed the baseline model in all epidemic phases between 283 

August 1, 2020 and January 15, 2022, while several other team models outperformed the baseline in some 284 

phases.  285 

 286 

Figure 7. Estimated marginal mean Weighted Interval Score (WIS) and 95% confidence intervals for mean 287 

cases from team-specific GEE models for all 51 jurisdictions (Panel A). The 95% confidence intervals for the 288 

COVIDhub-baseline model are shown in dashed red vertical lines. Panel B presents each team’s estimated 289 

marginal mean WIS per phase, scaled to the COVIDhub-baseline model’s estimated marginal mean WIS for all 290 

epidemic phases. Teams with higher estimated marginal mean WIS values (i.e., greater than 1.0) are 291 
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presented in shades of orange while teams with lower estimated marginal mean WIS (i.e., less than 1.0) are 292 

shown in shades of green. Forecasts for a team in a particular phase are marked with an asterisk (*) if the 80% 293 

confidence interval of the expected WIS outcome (normalized and on the log scale) was estimated by a model 294 

to be lower than the expected WIS of the COVIDhub-baseline model for all phases. 295 

 296 

To examine whether our results were affected by reporting anomalies, we also conducted sensitivity analyses 297 

for data revisions, when data were revised at a later date, and for outlier data points, when reported cases were 298 

outside of weekly expected ranges (see S2). We first identified weeks in which revised case counts as of April 2, 299 

2022 differed from the case counts initially reported for that week, excluded them from the dataset, and reran 300 

the GEE models. With this partial dataset, the results were essentially unchanged. Next, we identified outliers as 301 

reported case counts outside of the expected range by at least two of the three following algorithms: a rolling 302 

median, a seasonal trend decomposition, and a seasonal trend decomposition without a seasonality term, each 303 

method over a 21-day window. Approximately 3% of weeks (686 of 27,489 total week-location combinations in 304 

the analysis period) had at least one day of reported cases identified as an outlier. We then excluded the weeks 305 

with outliers and the week following an outlier and reran the GEE models. This sensitivity analysis had 306 

comparable results to the models with the full data (see S2 Figure 2.3, Panel A.). 307 

 308 

Discussion 309 

We evaluated performance of 9.7 million COVID-19 case forecasts at multiple geospatial scales in the US over 310 

approximately a year and a half. Real-time analyses and those presented here revealed important limitations in 311 

these forecasts. Forecast prediction intervals were largely over-confident, that is, prediction interval coverage 312 

was lower than the nominal value, particularly when case numbers were changing rapidly and forecasts could 313 

have been most useful. Few team forecasts outperformed a relatively simple and minimally informative baseline 314 

model. Forecast skill degraded for smaller geographic scales where forecasts could potentially be most useful. 315 
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Forecast skill was also lowest when case counts were changing the most, in phases of increasing or decreasing 316 

transmission. These limitations of case forecasts indicate key areas for improvement and important reasons to 317 

use case forecasts with caution. 318 

 319 

Several technical challenges for forecasts were evident in these analyses. First, cases are a relatively early 320 

indicator of transmission, with no clear leading signal in traditional public health surveillance data (e.g., unlike 321 

for death forecasts, where case counts themselves can provide information for predicting future deaths). While 322 

non-traditional data sources may provide a useful predecessor to changing population case counts, the evidence 323 

from previous work is unclear. For example, internet searches, medical claims, and online surveys have been 324 

used to modestly improve case forecast accuracy relative to models without those data (19). Estimating case 325 

counts using both wastewater and clinical surveillance data has shown mixed results (20–23). Additional 326 

integration of temporal dynamics could also be helpful. The case forecasts analyzed here were developed and 327 

evaluated based on the date when cases were reported, not when individuals were infected, became ill, sought 328 

care, or were tested. Additional detail on those dates could enable models to better capture the current 329 

dynamics using nowcasting approaches giving earlier signals of change.  330 

 331 

Second, and likely related to the challenge of cases being an early indicator, the models had substantial variation 332 

in skill between epidemic phases. In general, forecast skill was worst for the increasing phase followed by the 333 

decreasing phase. In many of these periods of low performance (e.g., the 2020-2021 winter, Delta, and Omicron 334 

waves), the COVIDhub ensemble predicted possible or probable increases or decreases, but not at the rate that 335 

actually occurred. This effect may be even stronger than our results show as they rely on a comparison to the 336 

baseline which, by definition, does not predict change. While epidemic phase is unknown in real time, it too can 337 

be estimated, and these results and others suggest that accounting for epidemic phase when making predictions 338 

could improve the forecast skill of ensemble models (24,25). Additional data, as discussed above, or model 339 

components associated with distinct phases could also help improve predictive capabilities. Seasonal changes in 340 
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transmission biology and human behavior, emergence of variants, and changing mitigation behavior all 341 

contribute to transmission dynamics. While some forecasting models incorporate seasonality and variants, 342 

integration of human behavior to characterize the link between behavior and transmission has lagged (13,26–343 

28). Ensemble approaches offer another opportunity to mitigate phase-specific differences. Team modeling skill 344 

across phases was highly heterogeneous, but two ensemble approaches were better than the baseline in all 345 

phases. 346 

 347 

Another challenge across most forecasts was overconfidence, a pattern seen with other infectious disease 348 

forecasts (4,18). The baseline model predicted a flat trend, yet it outperformed many sets of team forecasts in 349 

the increasing and decreasing phase only because its predictions had high uncertainty around that flat trend. 350 

The COVIDhub ensemble performance, on the other hand, benefitted by combining uncertainty across multiple 351 

models, yet, like the constituent models, also exhibited overconfidence. The temporal and phase-specific 352 

analyses suggest that it is, during rapid increases and decreases, that model overconfidence is most pronounced. 353 

Previous infectious disease forecasting work has shown that ensembles tend to have wider prediction intervals 354 

that are more likely to capture the eventually reported outcome and thus reduce overconfidence compared to 355 

their constituent models (4,18). Wider prediction intervals, reflecting increased uncertainty, can mediate some 356 

impacts of overconfidence. However, forecasts would be most useful if they were both reliable and informative - 357 

that is, if they could accurately capture the uncertainty, while also providing more precise estimates, rather than 358 

merely increased uncertainty (29,30).  359 

 360 

Finally, while forecasts would be most actionable at local scales, performance was generally worse for smaller 361 

than larger jurisdictions. Other infectious disease forecasting systems have found better forecast skill  at smaller 362 

geographic scales, likely because local transmission dynamics (e.g., a county) are a better predictor of local than 363 

aggregate transmission (e.g., a state) (31). We compared WIS across scales by comparison to the baseline model 364 

to adjust for missing forecasts and for WIS scaling relative to the magnitude of observed outcomes. After those 365 
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adjustments, population size had a clear association with forecast , likely reflecting the relative role of stochastic 366 

dynamics. For better local forecasts, models may need to explicitly account for stochasticity. Forecasts could 367 

also be improved by better leveraging spatial information, such as dynamics in neighboring counties or nearest 368 

urban centers. Local forecasts remain a key public health need, as local forecasts are more likely to reflect local 369 

conditions and motivate local mitigation action.  370 

 371 

Overall, these findings, as well as the real-time evaluations, indicated that COVID-19 case forecasts were not 372 

reliable as a single indicator for pandemic response of a novel pathogen. Similar to other forecasting studies, we 373 

found that the ensemble was among the most reliable forecasts (3,4,18,32), outperformed only by LNQ-ens1 374 

across the metrics evaluated here. Thus, while the overall best forecasts had poor performance at key times, 375 

other forecasts were often even worse at these same time points. Weighted (or trained) ensembles offer 376 

another potential avenue for improvement (33–35), but the version implemented here did not outperform the 377 

simple, median ensemble, likely reflecting limited historical data (36) and variation in team forecast submissions 378 

(37,38). 379 

 380 

While COVID-19 deaths are a more lagging indicator of infections than case reports, and so may be less useful as 381 

an input to public health decision making, forecasts of deaths have generally been more reliable (18). Similarly, 382 

COVID-19 hospitalization forecasts in France have also shown high forecast skill (39). Better performing US death 383 

and French hospitalization forecasts share one factor in common: models generally used local case reports as an 384 

input to inform their forecasts. While public health decision making should not rely on case forecasts alone, they 385 

may still be helpful in the context of other important indicators, such as the case, hospitalizations, and death 386 

reports. Nowcasts of reports and real-time estimates of the effective reproductive number can also provide 387 

insight on current dynamics (40–43). Together, a suite of indicators is more informative for outbreak response 388 

than a leading indicator alone.  389 

 390 
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The analysis presented here includes important findings about real-time applied forecasting in an emerging 391 

pandemic to inform pandemic response rather than to address specific research aims of improving predictions. 392 

Several factors limit the strength of our findings and ability to understand underlying mechanisms of predictive 393 

performance. Notably, we compared the forecasts to a changing record of reported cases. Throughout the 394 

COVID-19 outbreak, cases have been reported with jurisdiction- and time-varying delays and have been revised 395 

over time, resulting in varying forecast targets. In addition, the definition of a reported COVID-19 case also 396 

changed over time and varied between states. These changes were a result of many factors, including laboratory 397 

capacity and implementation of home-based testing, and may have affected forecast skill in other ways. Our 398 

sensitivity analyses found no qualitative differences in our main findings when we excluded forecasts for time 399 

points with revised data or when we excluded outlier data points. Nevertheless, forecasting teams were greatly 400 

impacted by the evolving landscape of COVID-19 case surveillance. More timely and consistent reports likely 401 

would improve both the process of making forecasts and forecast skill.  402 

 403 

The overall goal of the COVID-19 Forecast Hub was to provide forecasts in near real-time for decision making. 404 

While the collaborative efforts of the Hub achieved this goal despite a changing epidemic landscape, 405 

nevertheless, the e open nature of COVID-19 forecasting also limits understanding the drivers of forecast 406 

performance. Many teams participated at different times, some intermittently, and provided varied and limited 407 

descriptions of their forecast methods. While we were able to adjust our evaluation for differences in in varying 408 

submissions, we are unable to assess the underlying impact of modeling approaches on performance since we 409 

do not have the granular details on forecast methods and how they evolved over time for all team forecasts. For 410 

example, the LNQ-ens1, which outperformed all other forecasts by most metrics, only submitted forecasts for 411 

approximately two thirds of the analysis period and stopped in June 2021 (prior to the Delta wave). The model is 412 

described as a combination of three machine learning models, leveraging other embedded models and datasets, 413 

with weights that “are chosen by hand each week based on performance in the previous week” (see LNQ-ens1 414 

metadata, https://github.com/reichlab/covid19-forecast-415 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted June 4, 2023. ; https://doi.org/10.1101/2023.05.30.23290732doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.30.23290732


 

17 

 
 

hub/blob/b12f916abc859bf59ea584b64f53afc2982042fd/data-processed/LNQ-ens1/metadata-LNQ-ens1.txt, at 416 

(44)). The ensemble approach used in the LNQ-ens1 model building likely contributed to the overall 417 

performance. However, several other ensemble models had lower performance than the LNQ-ens1 model; we 418 

are unable to assess whether LNQ-ens1 performance gains were due to a particular component model or 419 

dataset, the hand weighting procedure, or something else. The brief descriptions submitted to the COVID-19 420 

Forecast Hub, such as for the LNQ-ens1, must include a summary of the methods used and may indicate a 421 

variety of unique features such as input data, parameters, model fitting, etc. (44). However, the level of detail 422 

provided in these descriptions varies between teams, and we do not have enough information to determine 423 

which aspects of individual models were important determinants of forecast performance. To elucidate 424 

associations between modeling approaches and forecast skill, additional research is needed. Future work to 425 

support improved forecasting will require assessing the impact of specific features (e.g., through ablation 426 

analyses) using retrospective, sable data systems and retrospective evaluation of the full forecasting process 427 

(e.g., from data wrangling to final forecast production).  428 

 429 

Infectious disease forecasting continues to present many challenges and opportunities for improving outbreak 430 

response. Forecasts should be leading indicators of future activity and, while the COVID-19 case ensemble 431 

forecasts were good leading indicators at many points in time; they were unreliable, especially during periods of 432 

rapid change. Case data were integrated in COVID-19 mortality forecasts, which proved to be more reliable, 433 

likely in part due to reported cases being leading indicators of reported deaths (18,45). However, because 434 

deaths are a lagging indicator, death forecasts are less useful for short-term outbreak responses. Evaluation of 435 

the case forecasts provided insight on limitations of early forecasts and research avenues for improving them. 436 

These insights and the real-time forecasts provided by this effort were the product of large-scale collaboration 437 

between researchers and public health responders to confront the COVID-19 pandemic. Learning from and 438 

improving forecasting for COVID-19, other infectious diseases, and future pandemics will benefit from 439 

continuing and expanding these collaborative efforts.  440 
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 441 

Methods 442 

The US COVID-19 Forecast Hub (46) is a consortium of researchers that develop and share forecasts of COVID-19 443 

reported cases, hospitalizations, and deaths with the goal of leveraging information from individual models that 444 

predict the near-term burden of COVID-19 in the United States. Teams that submitted models to the US COVID-445 

19 Forecast Hub used a wide variety of methodology and data (S1, Table S1). Beyond serving as a repository for 446 

forecasts, submitted data were also aggregated by scientists at the COVID-19 Forecast Hub to generate two 447 

models that we included in this analysis: the COVIDhub-4_week_ensemble and the COVIDhub-448 

trained_ensemble. Since the beginning of the COVID-19 Forecast Hub, the quantile predictions from each week’s 449 

submitted models were used as input data for the COVIDhub-4_week_ensemble. Ensemble aggregation 450 

methods  evolved over time; for this analysis period, the ensemble forecast was calculated as the median across 451 

forecasts from all models at each quantile level. Additionally, beginning on February 1, 2021, the COVID-19 452 

Forecast Hub also generated a weighted ensemble (COVIDhub-trained_ensemble). Models were selected for 453 

weighted ensemble inclusion based on their past performance over various window period and given a weight 454 

prior to aggregation. The methodology evolved over time and details are available on the model’s metadata file 455 

on the COVID-19 Forecast Hub GitHub repository (see Data and code availability and reporting guidelines). 456 

 457 

The COVID-19 Forecast Hub, and death forecasts submitted to the Hub have been described in detail elsewhere 458 

(8,17,18). The Hub’s incident COVID-19 case forecasts, which were first solicited in July 2020, have similar 459 

submission requirements to the death forecasts. Important differences include an expanded geographical scale 460 

(national; state, territory, and DC; and county levels) and reduced number of required quantiles in the 461 

probability distribution (7 quantiles in total: 0.025, 0.10, 0.25, 0.50, 0.75, 0.90, and 0.975). Predictions for weekly 462 

incident COVID-19 cases can be submitted for up to 8 weeks in the future, although our analysis only includes 463 

predictions made for 1-4 weeks into the future.  464 
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 465 

We evaluated submitted forecasts between July 28, 2020, and December 21, 2021 (2020 epi week [EW] 31 – 466 

2021 EW 51), which encompasses 73 weeks. Because forecasts were submitted at multiple geographic scales, 467 

we conducted separate analyses for 1) national forecasts, 2) state, territory, and DC forecasts, 3) county level 468 

forecasts, and 4) sets of team forecasts for all three geographic scales. When appropriate, we compared forecast 469 

performance to that of a naïve model, created by the COVID-19 Forecast Hub, the COVIDhub-baseline. The 470 

COVIDhub-baseline model, created each week, was designed to be a neutral model to provide a simple 471 

reference point of comparison for all models. This baseline model forecasts a predictive median incidence equal 472 

to the number of reported cases in the most recent week, with uncertainty based on the empirical distribution 473 

of previous differences between the median and observed values (18). 474 

 475 

Inclusion criteria  476 

Teams were included in the evaluation when they submitted forecasts with a complete set of quantiles for each 477 

1- through 4-week ahead target predictions. Additionally, teams must have met the following inclusion criteria: 478 

1. had predictions for at least 50 locations (states, territories, or DC) for the state, territory, and DC level 479 

analyses; and for at least 75% of counties included in each population size quantile per submission week 480 

for the county-level analyses; 481 

2. had submissions for at least 50% of the weeks included in the analysis period per location forecasted. 482 

 483 

Teams meeting these inclusion criteria, and their submissions over time, are depicted in S1, Figure S1. 484 

 485 

Ground Truth 486 

Forecasts were evaluated against the reported COVID-19 case reports collated by the Johns Hopkins Center for 487 

Systems Science and Engineering (CSSE) (47). To calculate weekly incident reported cases, we subtracted the 488 
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cumulative count for each Saturday from the cumulative count for the next Saturday, such that each incident 489 

weekly count reflects the number of cases reported from Sunday through Saturday in a given week. We 490 

aggregated reported counts from smaller geographic units into their larger unit. For example, counts in a given 491 

state are the aggregate of the county level reported counts and national counts are the sum of all states, 492 

territories, and DC.  493 

 494 

CSSE reports data in real-time. Thus, data may be revised if the reporting health system makes public updates to 495 

their surveillance data. At times, such revisions may result in negative daily counts or in increases to case counts 496 

if the date of cases is shifted from one day to another or the definition of a reportable case is changed. We 497 

examined the percent change between the first reported cases in each state, DC, and territory per date relative 498 

to the counts in the surveillance file from April 2, 2022. We also assessed the influence of revised data on the 499 

final model outcomes (see S2) and the presence of negative case counts in the timeseries. Less than 1 percent of 500 

time points in the analysis period had negative daily case counts in the largest US counties. Negative counts 501 

were observed at the state/territory level only twice: in Missouri during the week of April 17, 2021, and Virgin 502 

Islands during the week ending October 10, 2020. The state of Florida reported 0 cases on November 27, 2021. 503 

We excluded all weeks and locations with negative counts as well as the week with 0 incidence in Florida in our 504 

primary analyses. 505 

 506 

Additionally, we also examined whether a reported case count was an outlier in the case trend for each state. 507 

Anomalies in case data trends have not been uncommon throughout the pandemic, as reporting entities have 508 

uploaded large batches of surveillance data on a single day. To assess whether cases were outside of the 509 

expected range of reported cases over time, we applied three outlier detection algorithms, each with a 21-day 510 

window: a rolling median, a seasonal trend decomposition, and a seasonal trend decomposition without a 511 

seasonality term. We then classified a given count as an outlier if it was detected as such by at least two of the 512 

three algorithms. Using these data, we ran several sensitivity analyses to assess the likely impact of anomalous 513 
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data points on model performance. Sensitivity analyses examining the robustness of our findings to reporting 514 

anomalies are presented in S2.  515 

 516 

Additional information about the CSSE data, and revisions to the dataset, is publicly available on a GitHub 517 

repository:  518 

https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data.  519 

 520 

Forecast locations  521 

Forecasts for incident cases were submitted for the national level, 50 states, 5 territories (American Samoa, 522 

Guam, the Northern Mariana Islands, Puerto Rico, and the US Virgin Islands), the DC, and 3,142 US counties. We 523 

excluded two counties in Alaska because they were not forecasted by most sets of team forecasts (Federal 524 

Information Processing Standard code 02063 and 02066 were excluded). Because fewer teams submitted 525 

forecasts for American Samoa, Guam, the Northern Mariana Islands, we excluded these territories from the 526 

analysis. Some teams treated DC as both a county and a jurisdiction, so we excluded DC from the county 527 

forecasts. In addition, because county population size and transmission are correlated and case counts and 528 

forecast performance are also correlated, we grouped counties into 5 quantiles based on their population sizes, 529 

with cut points at 8,908; 18,662; 36,742; and 93,230 people; most analyses used forecasts from the quantile 530 

with the largest population size (n=628). We hypothesized that small counties would be more likely to have 531 

better forecast accuracy because they had zero or very few reported cases. We thus chose to stratify counties by 532 

size to minimize any bias from aggregation. Performance results for most county forecasts are presented in S3. 533 

 534 

Defining epidemic phases  535 

For every state and DC, we independently classified each forecast week based on the estimated time-varying 536 

reproduction number (Rt) for that given week. State-level Rt estimates were obtained from 537 
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https://github.com/epiforecasts/epiforecasts.github.io (48). We extracted the Rt estimate for the Wednesday of 538 

each week from all available files. Because Rt estimates were updated on a rolling basis in near real time, there 539 

were multiple estimates generated for the same date; we calculated the median estimated Rt per date for the 540 

upper and lower 90% credible interval and the median value (August 1, 2020 – January 15, 2022, or 2020 EW 31 541 

– 2022 EW 2, reflecting 77 weeks in total). Each forecast week was then classified into one of the following 542 

categories based on the Rt estimates: increasing, peak, decreasing, nadir. 543 

 544 

Increasing and decreasing phases reflect weeks in which Rt had a 90% probability of being greater than or less 545 

than 1.0, respectively. There were several periods of rapid transmission in certain jurisdictions where Rt dipped 546 

above/below the 1.0 threshold but did not remain on an upward or downward trajectory. Thus, we classified 547 

weeks between two increasing phases as increasing and weeks between two decreasing periods as decreasing. 548 

Weeks between increasing and decreasing phases were classified as peaks, whereas nadirs were defined as 549 

periods between decreasing and increasing phases. Periods at the beginning or the end of an analysis period 550 

were classified as a continuation of whichever phase preceded or followed them. Graphical depictions of Rt are 551 

provided in S4 and show general concordance between Rt and reported cases.   552 

 553 

Evaluation methodology  554 

We evaluated probabilistic forecast accuracy using two different metrics, empirical prediction interval coverage 555 

rates and weighted interval scores (WIS) (49). Coverage was calculated by determining the frequency with which 556 

the prediction interval contained the eventually observed outcome for the 50%, 80% and 95% intervals. WIS 557 

reflects a weighted estimate of sharpness (i.e., the range of the predicted interval) and calibration (i.e., precision 558 

or error) across the three prediction intervals and the median prediction, with higher WIS and indicating lower 559 

forecast skill. Importantly, WIS is highly correlated with the magnitude of observed and forecasted values. We 560 

used mean absolute WIS to assess forecast accuracy over time and mean relative WIS (rWIS) to access forecast 561 

accuracy over space. Relative WIS was estimated by calculating the geometric mean of WIS across all sets of 562 
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team forecasts and scaling that value to the WIS of a naïve model, the COVID-hub baseline. This approach eases 563 

interpretation, where values greater than 1.0 reflected worse accuracy than the baseline model and values 564 

below 1.0 reflected better model performance. Additionally, the pairwise relative comparison helps account for 565 

missing forecasts. Both coverage and WIS have been described in detail elsewhere (18,49). Horizon specific 566 

results for national, state/territory/DC, and large counties are presented in S5. 567 

 568 

To assess the association between WIS and epidemic phase for each team, we fitted separate Gaussian 569 

generalized estimating equation (GEE) models per team (equation 1) with an independent working correlation 570 

structure at the state-level. This structure assumes that observations are not correlated over time in a state 571 

(denoted as � in the equations below). Cases and weighted interval scores were log transformed and then 572 

standardized (subtracting the mean and dividing by the standard deviation) prior to fitting the model, as this 573 

transformation yielded more computationally and numerically stable estimates. We define those resulting 574 

variables as stdWIS and stdCases. The expected value for a standardized WIS for time (t) and location (l), with 575 

forecasts from a given team’s model, is as follows: 576 

 577 

��� �����	
�,�,�� �  �� � ����,�� � �� � ������ ����������,�,�� �  � ��,�,�  (1) 578 

 579 

Where ���, �� is an index that reflects the phase of each time (�) and location (�), (�) is the horizon of the 580 

forecast in weeks, and ����� represents a natural spline with two degrees of freedom. Using a regression model 581 

allows us to summarize patterns of overall average performance between teams while accounting for high 582 

correlation and variation in the scores. Comparisons of rWIS, in contrast, do not allow for formal inference on 583 

the differences in performance between teams. Prior to applying this regression model structure, our model 584 

building approach included exploratory analysis of several structures appropriate for longitudinal analysis. We 585 

examined model residuals, influential observations, goodness of fit metrics, and the impact of changing the 586 

functional form of the variables included in the model. 587 
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 588 

The inclusion of reported cases in models permitted flexible adjustment for the wide range in cases between 589 

and within jurisdictions, which led to a wide range of possible WIS values, as WIS values tend to be higher when 590 

counts are higher. Expected WIS values were computed by first obtaining a marginal mean from the GEE model 591 

and then undoing the transformations by exponentiating and un-standardizing the marginal mean. This was 592 

done separately for each team for all phases and for each team and each phase individually (see S6 for 593 

estimated team-specific marginal mean WIS relative to reported case counts). Additionally, we calculated 594 

whether the 80% confidence interval (based on Gaussian distributional assumptions) for each team’s expected 595 

WIS outcome (on the log-scale and normalized, as described above) was less than the baseline model for all 596 

phases (i.e., the marginal mean WIS for the baseline model).  597 

 598 

Data and code availability and reporting guidelines 599 

The forecasts from models used in this paper are available from the COVID-19 Forecast Hub GitHub repository 600 

(https://github.com/reichlab/covid19-forecast-hub) (8) and the Zoltar forecast archive 601 

(https://zoltardata.com/project/44) (50). The code used to generate all figures and tables in the manuscript is 602 

available in a public repository  603 

(https://github.com/cdcepi/Evaluation-of-case-forecasts-submitted-to-COVID19-Forecast-Hub). All analyses 604 

were conducted using the R language for statistical computing (v 4.0.3) (51), and the following packages were 605 

used for the main analyses: scoringutils (52), covidhubUtils (53), geepack (54). Additionally, we included the 606 

EPIFORGE 2020 reporting guideline checklist in S7 to indicate each page in this evaluation that corresponds to 607 

each specific recommendation (15).  608 

 609 

This activity was reviewed by CDC and was conducted consistent with applicable federal law and CDC policy. 610 
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CDC disclaimer: The findings and conclusions in this report are those of the authors and do not necessarily 611 

represent the official position of the Centers for Disease Control and Prevention. 612 
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Supporting information captions 763 

Supporting Information 1: Team submissions, methods, and data 764 

 765 

SI Figure 1.1. Forecasts submitted over time at the national, state-territory-DC level in panel A and at the 766 

country scale in Panel B. The number of forecasted locations submitted each week nationally or at the state, 767 

territory and DC level is included, while the country level forecast submissions shows the percent of counties 768 

per quantile that were submitted each week. Sets of team forecasts meeting the inclusion criteria for this 769 

main analysis are labeled with an asterisk (*). 770 

 771 

S1 Table 1.1. List of models evaluated, including sources for case, hospitalization, death, demographic, and 772 

mobility data when used as inputs for the given model. We evaluated 26 models contributed by 24 teams. The 773 

COVIDhub team submitted three models including the baseline model and the ensemble model. A brief 774 

description is included for each model, with a reference where available. The last column indicates whether 775 

the model made assumptions about how and whether social distancing measures were assumed to change 776 

during the period for which forecasts were made. 777 

Supporting Information 2: Revision and outlier sensitivity analyses  778 

 779 

S2 Figure 2.1. To assess the influence of data revisions on our evaluation of forecast skill, we compared daily 780 

differences in cumulative reported cases during the week they were first reported to reported case counts for 781 
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the same week in the complete data as of April 2, 2022. In total 721 weeks had at least one day with a revised 782 

case count (17% of all weeks, n=4,241 weeks) and revisions occurred in 43 of 51 jurisdictions. These 783 

jurisdiction specific plots compare cases reported as of the date in the subtitle (in red) compared to cases 784 

reported as of April 2, 2022 (in black).  785 

 786 

S2 Figure 2.2. After identifying weeks with revised case counts, we then excluded them from the dataset and 787 

reran the GEE models and estimated the marginal mean Weighted Interval Score (WIS). Panel A shows the 788 

estimated marginal mean WIS and 95% confidence intervals for mean cases from team-specific GEE models 789 

for all 48 jurisdictions from this sensitivity analysis. The 95% confidence intervals for the COVIDhub-baseline 790 

model are shown in dashed red vertical lines. Panel B presents each team’s estimated marginal mean WIS per 791 

phase, scaled to the COVIDhub-baseline model’s estimated marginal mean WIS for all epidemic phases, using 792 

the dataset with excluded week. Teams with higher estimated marginal mean WIS values (i.e., greater than 793 

1.0) are presented in shades of orange while teams with lower estimated marginal mean WIS (i.e., less than 794 

1.0) are shown in shades of green. Team forecasts are denoted with an asterisk (*) if the 80% confidence 795 

interval of the expected WIS outcome (normalized and on the log scale) was estimated by a model to be lower 796 

than the expected WIS of the COVIDhub-baseline model for all phases. 797 

 798 

S2 Figure 2.3. Outliers were defined as non-revised reported case counts that were outside of the expected 799 

range by at least two of the three algorithms: a rolling median, a seasonal trend decomposition, and a 800 

seasonal trend decomposition without a seasonality term. Each method used a 21-day window. 801 

Approximately three percent of weeks (686 of 27,489 total weeks in the analysis period) had at least one day 802 

of reported cases identified as an outlier. 803 

 804 
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Supporting Information 3: Incident COVID-19 case forecasts were submitted for all US counties. The 805 

plots shown here depicted average, scaled pairwise Weighted Interval Score (WIS; see Methods for 806 

description), 95% coverage, and submissions (S3 Figure 3.1), average 50%, 80% and 95% coverage for 807 

eligible submitted forecasts (S3 Figure 3.2), and average WIS and 95% coverage over time (S3 Figure 808 

3.2). Each figure shows spatial disaggregated results, with increasing population size and quantile 809 

numbers. For example, counties with the smallest population are grouped in Quantile 1 and the 810 

largest population sizes are grouped in Quantile 5. The following teams are included in these figures: 811 

CEID-Walk, LNQ-ens1, Microsoft_DeepSTIA, COVIDhub-4_week_ensemble, COVIDhub-812 

trained_ensemble, COVIDhub-baseline, CU-select, FAIR-NRAR, FRBSF_Wilson-Econometric, 813 

IowasStateLW-STEM, JHU_IDD-CovidSP, JHU_CSSE-DECOM, JHUAPL-Bucky, LANL-GrowthRate, LNQ-814 

esn1, UVA-Ensemble.  815 

 816 

S3 Figure 3.1. Percent of weeks with complete submissions for all sets of team forecasts, scaled, pairwise 817 

relative Weighted Interval Score (rWIS), 95% coverage, and by geographical scale of submitted forecasts. 818 

Teams are sorted by increasing rWIS values. 819 

 820 

S3 Figure 3.2. Expected and observed coverage rates aggregated over time and horizon for county forecasts. 821 

The dashed line represents optimal expected coverage. Team forecasts that outperformed the COVIDhub-822 

4_week_ensemble model at all coverage levels are labeled on the right hand side of the plots.  823 

 824 

S3 Figure 3.3. Mean Weighted Interval Score (WIS) over time, aggregated by geographic units and forecast 825 

horizon in A and 95% coverage over time, aggregated by geographic units and forecast horizon in B. The black, 826 

dashed vertical line in all panels shows the date that public communication of the case forecasts was paused. 827 

The black, dashed horizontal line in panels B show nominal 95% interval coverage  828 
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 829 

Supporting Information 4: Estimated time-varying reproduction number and epidemic phase 830 

classifications. For each state, the top panel shows the median Rt and median upper and lower 90% 831 

credible interval over time in red. The bottom panel shows reported case counts over time. Both 832 

plots have vertical bands representing the epidemic phase of each forecast week: increasing, peak, 833 

decreasing, nadir. 834 

 835 

Supporting Information 5: Each location specific forecast submitted to the COVID19 Forecast Hub 836 

included at least 4 weeks of future predictions. Here, we present disaggregated 1 and 4 week ahead 837 

predictions of model performance for each team model that submitted national and 838 

state/territory/DC forecasts and were included in the main analyses. Specific plots include the 839 

average 50%, 80% and 95% coverage for eligible submitted forecasts (S5 Figure 5.1), average 840 

absolute Weighted Interval Score (WIS) and 95% coverage over time (S5 Figure 5.2), and scaled, 841 

pairwise rWIS by location (S5 Figure 5.3) 842 

 843 

S5 Figure 5.1. Expected and observed coverage rates aggregated for 1 and 4 week ahead forecasts over time 844 

for national forecasts in A, state/territory/DC forecasts in B, the largest country forecasts in C. The dashed line 845 

represents optimal expected coverage. Teams that outperformed the COVIDhub-4_week_ensemble model at 846 

all coverage levels are labeled on the right-hand side of the plots.  847 

 848 

S5 Figure 5.2. Mean Weighted Interval Score (WIS) over time for 1 and 4 week ahead forecasts, aggregated by 849 

geographic units, and 95% coverage over time for 1 and 4 week ahead forecasts, aggregated by geographic 850 
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units. The black, dashed vertical line in all panels shows the date that public communication of the case 851 

forecasts was paused. The black, dashed horizontal line in panels D, E, and F show nominal 95% interval 852 

coverage. Teams that submitted national forecasts are presented in A. and D., state/territory/DC forecasts 853 

presented in B. and E., and teams that submitted large county level forecasts are presented in C. and F.  854 

 855 

 856 

S5 Figure 5.3. Scaled, pairwise relative Weighted Interval Score (rWIS; see Methods for description) for all 857 

teams that submitted national and state/territory/DC forecasts by location for 1 and 4 week ahead horizon. 858 

National estimates are displayed first, followed by jurisdictions in alphabetical order. Teams are displayed by 859 

decreasing average rWIS across all forecast horizons and locations.  860 

 861 

Supporting Information 6: Each team model’s estimated marginal mean Weighted Interval Score 862 

(WIS) over range of reported case counts per epidemic phase. Marginal mean WIS was estimated 863 

from GEE model results and reflect values across the 95% confidence interval of mean reported 864 

cases. Case counts differ per team model as each team forecasted a different set of locations over a 865 

different range of possible dates.  866 

 867 

Supporting Information 7: EPIFORGE 2020 guidelines outline 19 recommended reporting items for 868 

epidemic forecasting and prediction research (15). These items are included in the checklist below, 869 

which also include the page number where each item is described or presented within this 870 

evaluation.   871 
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Main Text Figures 872 

 873 

Figure 1. Weekly incident reported COVID-19 cases per 100K population, nationally (in black) and per 874 

state/territory/DC (in gray), over time in panel A. Panel B shows a subset of COVIDhub-4_week_ensemble 875 

forecasts (in green) over time, with the median predictions represented as lines and points and the 95% 876 

prediction intervals in bands. Reported incident cases (counts per week) are shown in gray. In both plots, the 877 

black, dashed vertical line shows the date that public communication of the case forecasts was paused.  878 

 879 
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Figure 2: Percent of weeks with complete submissions for all sets of team forecasts, scaled, pairwise relative Weighted Interval Score (rWIS; see Methods for 0 

description), observed 95% prediction interval coverage, by geographical scale of submitted forecasts. Teams are sorted by increasing state/territory/DC rWIS 1 

values. 2 
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Figure 3: Expected and observed coverage rates for central 50%, 80% and 95% prediction intervals aggregated over time 84 

and horizon for national forecasts (panel A), state/territory/DC forecasts (panel B), the largest county forecasts (panel 85 

C). The dashed line represents optimal expected coverage. Team forecasts that had closer to nominal coverage than the 86 

COVIDhub-4_week_ensemble model at all three coverage levels are labeled on the right side of the plots. 87 

 88 
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Figure 4: Scaled, pairwise relative Weighted Interval Score (rWIS) (see Methods for description) by spatial scale for sets 89 

of team forecasts that submitted forecasts for the US nation, states/territories/DC, and all US counties. WIS is averaged 90 

across all horizons. The COVIDhub-baseline model has, by definition, a rWIS of 1 (horizontal dashed line). Teams are 91 

ordered by increasing state/territory/DC rWIS with the most accurate model on the left. Points for each team are 92 

staggered horizontally to show overlapping WIS values. 93 

 94 

 95 

  96 
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Figure 5: Scaled, pairwise relative Weighted Interval Score (rWIS; see Methods for description) by location for national 97 

and state/territory/DC forecasts, averaged across all horizons through the entire analysis period. National estimates are 98 

displayed first, followed by jurisdictions in alphabetical order. Team forecasts are ordered by increasing average 99 

state/territory/DC rWIS.   00 

 01 

 02 
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Figure 6: Forecast accuracy over time, aggregated by geographic units, forecast horizon, and prediction date. Panels A-C 03 

show average Weighted Interval Score (WIS); panels D-F show 95% prediction interval coverage. The black, dashed 04 

vertical line in all panels shows the date that public communication of the case forecasts was paused. The black, dashed 05 

horizontal line in panels D-F shows nominal 95% interval coverage. National level forecasts are presented in A and D, 06 

state/territory/DC forecasts in B and E and large county level forecasts in C and F.  07 

 08 

 09 

 10 
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Figure 7. Estimated marginal mean Weighted Interval Score (WIS) and 95% confidence intervals for mean cas11 

team-specific GEE models for all 51 jurisdictions (Panel A). The 95% confidence intervals for the COVIDhub-12 

model are shown in dashed red vertical lines. Panel B presents each team’s estimated marginal mean WIS pe13 

scaled to the COVIDhub-baseline model’s estimated marginal mean WIS for all epidemic phases. Teams wit14 

estimated marginal mean WIS values (i.e., greater than 1.0) are presented in shades of orange while teams wi15 

estimated marginal mean WIS (i.e., less than 1.0) are shown in shades of green. Forecasts for a team in a p16 

phase are marked with an asterisk (*) if the 80% confidence interval of the expected WIS outcome (normalized17 

the log scale) was estimated by a model to be lower than the expected WIS of the COVIDhub-baseline mod18 

phases. 19 
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